Plant Diversity ›› 2020, Vol. 42 ›› Issue (06): 434-442.DOI: 10.1016/j.pld.2020.09.008
Urtnasan Mandakha,b,c, Munkhjargal Battserend, Danzanchadav Ganbatc,e, Turuutuvshin Ayangac, Zolzaya Adiyac,f, Almaz Borjigidaib,g, Chunlin Longa,b
收稿日期:
2020-03-20
修回日期:
2020-08-20
出版日期:
2020-12-25
发布日期:
2021-03-03
通讯作者:
Chunlin Long, Almaz Borjigidai
基金资助:
Urtnasan Mandakha,b,c, Munkhjargal Battserend, Danzanchadav Ganbatc,e, Turuutuvshin Ayangac, Zolzaya Adiyac,f, Almaz Borjigidaib,g, Chunlin Longa,b
Received:
2020-03-20
Revised:
2020-08-20
Online:
2020-12-25
Published:
2021-03-03
Contact:
Chunlin Long, Almaz Borjigidai
Supported by:
摘要: Cistanche deserticola is an important medicinal plant in Mongolia. Despite its significant role in local healing systems, little traditional knowledge had been reported. The present study investigated folk names of C. deserticola and other species of the same community in Umnugobi Province, South Gobi region of Mongolia, based on ethnobotanical approaches. The high correspondence between folk names and scientific names of plant species occurring in Cistanche-associated community shows the scientific meaning of folk nomenclature and classification in Mongolia. The Mongolian and folk names of plants were formed on the basis of observations and understanding of wild plants including their morphology, phenology and traditional uses as well. Results from this study will support the conservation of C. deserticola itself, a rare and endangered plant species listed in the Monglian Red Data Book. Our documentation of folk nomenclature based on 96 plant species in the Cistanche community, as a part of traditional knowledge associated with biodiversity, will be very helpful for making strategy of plant biodiversity conservation in Mongolia.
Urtnasan Mandakh, Munkhjargal Battseren, Danzanchadav Ganbat, Turuutuvshin Ayanga, Zolzaya Adiya, Almaz Borjigidai, Chunlin Long. Folk nomenclature of plants in Cistanche deserticola-associated community in South Gobi, Mongolia[J]. Plant Diversity, 2020, 42(06): 434-442.
Urtnasan Mandakh, Munkhjargal Battseren, Danzanchadav Ganbat, Turuutuvshin Ayanga, Zolzaya Adiya, Almaz Borjigidai, Chunlin Long. Folk nomenclature of plants in Cistanche deserticola-associated community in South Gobi, Mongolia[J]. Plant Diversity, 2020, 42(06): 434-442.
[1] |
Aemisegger F, Sturm P, Graf P, Sodemann H, Pfahl S, Knohl A, Wernli H ( 2012). Measuring variations of 18O and δD in atmospheric water vapour using two commercial laser-based spectrometers: An instrument characterisation study. δ Atmospheric Measurement Techniques, 5, 1491-1511.
DOI URL |
[2] |
Bickford CP, Hanson DT, McDowell NG ( 2010). Influence of diurnal variation in mesophyll conductance on modelled 13C discrimination: Results from a field study . Journal of Experimental Botany, 61, 3223-3233.
DOI URL PMID |
[3] |
Bowling DR, Burns SP, Conway TJ, Monson RK, White JWC ( 2005). Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochemical Cycles, 19, GB3023. DOI: 10.1029/2004GB002394.
DOI URL |
[4] |
Bowling DR, Sargent SD, Tanner BD, Ehleringer JR ( 2003). Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agricultural and Forest Meteorology, 118, 1-19.
DOI URL |
[5] |
Chen CH, Pang JP, Wei J, Wen XF, Sun XM ( 2017). Inter-comparison among three models for the δ 13C of respiration with four regression approaches. Agricultural and Forest Meteorology, 247, 229-239
DOI URL |
[6] |
Flowers BA, Powers HH, Dubey MK, McDowell NG ( 2012). Inter-comparison of two high-accuracy fast-response spectroscopic sensors of carbon dioxide: A case study. Atmospheric Measurement Techniques, 5, 991-997.
DOI URL |
[7] |
Griffis TJ ( 2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174, 85-109.
DOI URL |
[8] |
Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J ( 2004). Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agricultural and Forest Meteorology, 124, 15-29.
DOI URL |
[9] |
Griffis TJ, Lee X, Baker JM, Sargent SD, King JY ( 2005). Feasibility of quantifying ecosystem-atmosphere C 18O 16O exchange using laser spectroscopy and the flux-gradient method . Agricultural and Forest Meteorology, 135, 44-60.
DOI URL |
[10] |
Griffith DWT, Deutscher NM, Caldow C, Kettlewell G, Riggenbach M, Hammer S ( 2012). A fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmospheric Measurement Techniques, 5, 2481-2498.
DOI URL |
[11] |
Guillon S, Agrinier P, Pili E ( 2015). Monitoring CO2 concentration and 13C in an underground cavity using a commercial isotope ratio infrared spectrometer. δ Applied Physics B—Lasers and Optics, 119, 165-175.
DOI URL |
[12] |
Guillon S, Pili E, Agrinier P ( 2012). Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media. Applied Physics B—Lasers and Optics, 107, 449-457.
DOI URL |
[13] |
Hammer S, Griffith DWT, Konrad G, Vardagl S, Caldow C, Levin I ( 2013). Assessment of a multi-species in situ ftir for precise atmospheric greenhouse gas observations. Atmospheric Measurement Techniques, 6, 1153-1170.
DOI URL |
[14] |
Keppler F, Laukenmann S, Rinne J, Heuwinkel H, Greule M, Whiticar M, Lelieveld J ( 2010). Measurements of 13C/ 12C methane from anaerobic digesters: Comparison of optical spectrometry with continuous-flow isotope ratio mass spectrometry . Environmental Science & Technology, 44, 5067-5073.
DOI URL PMID |
[15] |
Kurita N, Newman BD, Araguas-Araguas LJ, Aggarwal P ( 2012). Evaluation of continuous water vapor δD and δ 18O measurements by off-axis integrated cavity output spectroscopy. Atmospheric Measurement Techniques, 5, 2069-2080.
DOI URL |
[16] | Lin GH ( 2013). Stable Isotope Ecology. Higher Education Press, Beijing. 30. |
[ 林光辉 ( 2013). 稳定同位素生态学. 高等教育出版社, 北京. 30.] | |
[17] |
McManus JB, Nelson DD, Zahniser MS ( 2010). Long-term continuous sampling of 12CO2, 13CO2 and 12C 18O 16O in ambient air with a quantum cascade laser spectrometer . Isotopes in Environmental and Health Studies, 46, 49-63.
DOI URL |
[18] |
Mohn J, Tuzson B, Manninen A, Yoshida N, Toyoda S, Brand WA, Emmenegger L ( 2012). Site selective real-time measurements of atmospheric N2O isotopomers by laser spectroscopy. Atmospheric Measurement Techniques, 5, 1601-1609.
DOI URL |
[19] |
Mohn J, Wolf B, Toyoda S, Lin CT, Liang MC, Bruggemann N, Wissel H, Steiker AE, Dyckmans J, Szwec L, Ostrom NE, Casciotti KL, Forbes M, Giesemann A, Well R, Doucett RR, Yarnes CT, Ridley AR, Kaiser J, Yoshida N ( 2014). Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: Current status and perspectives. Rapid Communications in Mass Spectrometry, 28, 1995-2007.
DOI URL PMID |
[20] |
Pang JP, Wen XF, Sun XM, Huang K ( 2016 a). Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2/ 12CO2 measurement . Atmospheric Measurement Techniques, 9, 3879-3891.
DOI URL |
[21] |
Pang J, Wen X, Sun X ( 2016 b). Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China. Science of the Total Environment, 539, 322-330.
DOI URL PMID |
[22] |
Santos E, Wagner-Riddle C, Lee X, Warland J, Brown S, Staebler R, Bartlett P, Kim K ( 2012). Use of the isotope flux ratio approach to investigate the 12C 18O 16O and 13CO2 exchange near the floor of a temperate deciduous forest . Biogeosciences, 9, 2385-2399.
DOI URL |
[23] |
Schaeffer SM, Miller JB, Vaughn BH, White JWC, Bowling DR ( 2008). Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO2 in forest air. Atmospheric Chemistry and Physics, 8, 5263-5277.
DOI URL |
[24] |
Shim JH, Powers HH, Meyer CW, Pockman WT, McDowell N ( 2011). The role of interannual, seasonal, and synoptic climate on the carbon isotope ratio of ecosystem respiration at a semiarid woodland. Global Change Biology, 17, 2584-2600.
DOI URL |
[25] |
Sturm P, Eugster W, Knohl A ( 2012). Eddy covariance measurements of CO2 isotopologues with a quantum cascade laser absorption spectrometer. Agricultural and Forest Meteorology, 152, 73-82.
DOI URL |
[26] |
Sturm P, Knohl A ( 2010). Water vapor δ 2H and δ 18O measurements using off-axis integrated cavity output spectroscopy . Atmospheric Measurement Techniques, 3, 67-77.
DOI URL |
[27] |
Sturm P, Tuzson B, Henne S, Emmenegger L ( 2013). Tracking isotopic signatures of CO2 at the high altitude site jungfraujoch with laser spectroscopy: Analytical improvements and representative results. Atmospheric Measurement Techniques, 6, 1659-1671.
DOI URL |
[28] |
Tanaka K, Kojima R, Takahashi K, Tonokura K ( 2013). Continuous measurements of stable carbon isotopes in CO2 with a near-IR laser absorption spectrometer. Infrared Physics & Technology, 60, 281-287.
DOI URL |
[29] | Tuzson B, Mohn J, Zeeman MJ, Werner RA, Eugster W, Zahniser MS, Nelson DD, McManus JB, Emmenegger L ( 2008). High precision and continuous field measurements of δ 13C and δ 18O in carbon dioxide with a cryogen-free qclas. Applied Physics B-Lasers and Optics, 92, 451-458. |
[30] |
Vogel FR, Huang L, Ernst D, Giroux L, Racki S, Worthy DEJ ( 2013). Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2. Atmospheric Measurement Techniques, 6, 301-308.
DOI URL |
[31] |
Wada R, Pearce JK, Nakayama T, Matsumi Y, Hiyama T, Inoue G, Shibata T ( 2011). Observation of carbon and oxygen isotopic compositions of CO2 at an urban site in nagoya using mid-IR laser absorption spectroscopy. Atmospheric Environment, 45, 1168-1174.
DOI URL |
[32] |
Wang J, Wen XF, Li SG ( 2017). Differentiated correction on the signal intensity dependence of GasBench II-IRMS from blank effect and instrument nonlinear effect. International Journal of Mass Spectrometry, 422, 80-87.
DOI URL |
[33] |
Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR ( 2016). Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 534, 680-686.
DOI URL PMID |
[34] |
Wehr R, Munger JW, Nelson DD, McManus JB, Zahniser MS, Wofsy SC, Saleska SR ( 2013). Long-term eddy covariance measurements of the isotopic composition of the ecosystem- atmosphere exchange of CO2 in a temperate forest. Agricultural and Forest Meteorology, 181, 69-84.
DOI URL |
[35] |
Wen XF, Lee X, Sun XM, Wang JL, Tang YK, Li SG, Yu GR ( 2012). Inter-comparison of four commercial analyzers for water vapor isotope measurement. Journal of Atmospheric and Oceanic Technology, 29, 235-247.
DOI URL |
[36] |
Wen XF, Meng Y, Zhang XY, Sun XM, Lee X ( 2013). Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13CO2/ 12CO2 measurement . Atmospheric Measurement Techniques, 6, 1491-1501.
DOI URL |
[37] |
Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee X ( 2008). Continuous measurement of water vapor D/H and 18O/ 16O isotope ratios in the atmosphere . Journal of Hydrology, 349, 489-500.
DOI URL |
[38] |
Wingate L, Ogee J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A ( 2010). Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytologist, 188, 576-589.
DOI URL PMID |
[39] |
Yakir D, Sternberg LDL ( 2000). The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123, 297-311.
DOI URL PMID |
[40] |
Yamamoto A, Uchida Y, Akiyama H, Nakajima Y ( 2014). Continuous and unattended measurements of the site preference of nitrous oxide emitted from an agricultural soil using quantum cascade laser spectrometry with intercomparison with isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 28, 1444-1452.
DOI URL PMID |
[41] |
Zhang J, Griffis TJ, Baker JM ( 2006). Using continuous stable isotope measurements to partition net ecosystem CO2 exchange. Plant, Cell & Environment, 29, 483-496.
DOI URL PMID |
[1] | Mustafa Karak?se. An ethnobotanical study of medicinal plants in Güce district, north-eastern Turkey[J]. Plant Diversity, 2022, 44(06): 577-597. |
[2] | Daniel Mutavi Katumo, Huan Liang, Anne Christine Ochola, Min Lv, Qing-Feng Wang, Chun-Feng Yang. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare[J]. Plant Diversity, 2022, 44(05): 429-435. |
[3] | Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains[J]. Plant Diversity, 2022, 44(01): 30-38. |
[4] | Qichi Yang, Hehe Zhang, Lihui Wang, Feng Ling, Zhengxiang Wang, Tingting Li, Jinliang Huang. Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests[J]. Plant Diversity, 2021, 43(04): 264-274. |
[5] | Jun Yang, Jifeng Luo, Qiliang Gan, Leiyu Ke, Fengming Zhang, Hairu Guo, Fuwei Zhao, Yuehu Wang. An ethnobotanical study of forage plants in Zhuxi County in the Qinba mountainous area of central China[J]. Plant Diversity, 2021, 43(03): 239-247. |
[6] | Huifu Zhuang, Chen Wang, Yanan Wang, Tao Jin, Rong Huang, Zihong Lin, Yuhua Wang. Native useful vascular plants of China: A checklist and use patterns[J]. Plant Diversity, 2021, 43(02): 134-141. |
[7] | Yong Xiong, Xueyi Sui, Selena Ahmed, Zhi Wang, Chunlin Long. Ethnobotany and diversity of medicinal plants used by the Buyi in eastern Yunnan, China[J]. Plant Diversity, 2020, 42(06): 401-414. |
[8] | Peter Raven, Mathis Wackernagel. Maintaining biodiversity will define our long-term success[J]. Plant Diversity, 2020, 42(04): 211-220. |
[9] | Kflay Gebrehiwot, Sebsebe Demissew, Zerihun Woldu, Mekbib Fekadu, Temesgen Desalegn, Ermias Teferi. Elevational changes in vascular plants richness, diversity, and distribution pattern in Abune Yosef mountain range, Northern Ethiopia[J]. Plant Diversity, 2019, 41(04): 220-228. |
[10] | Sergei Volis. Conservation-oriented restoration—a two for one method to restore both threatened species and their habitats[J]. Plant Diversity, 2019, 41(02): 50-58. |
[11] | Jian-Ling Guo, Wen-Juan Cao, Zhi-Min Li, Yong-Hong Zhang, Sergei Volis. Conservation implications of population genetic structure in a threatened orchid Cypripedium tibeticum[J]. Plant Diversity, 2019, 41(01): 13-18. |
[12] | Sergei Volis. Complementarities of two existing intermediate conservation approaches[J]. Plant Diversity, 2017, 39(06): 379-382. |
[13] | Sergei Volis. Conservation utility of botanic garden living collections: Setting a strategy and appropriate methodology[J]. Plant Diversity, 2017, 39(06): 365-372. |
[14] | Farrukh Hussain1, Ilyas Iqbal1, Mufakhirah Jan Durrani2. Ethnobotany of Ghalegay, District Swat, Pakistan[J]. Plant Diversity, 2006, 28(03): 305-314. |
[15] | Hassan SHER,ZD.KHAN,AU.KHAN,F.HUSSAIN. Ethnobotanical Study on Some Plants in Village Tigdari,District Swat,Pakistan[J]. Plant Diversity, 2004, 26(15): 1-3. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||