AlShehbaz IA, Beilstein MA, Kellogg EA, 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview[J]. Plant Systematics and Evolution, 259 (2): 89—120
Armengaud P, Breitling R, Amtmann A, 2004. The potassiumdependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiology, 136 (1): 2556—2576
Armengaud P, Sulpice R, Miller AJ et al., 2009. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots[J]. Plant Physiology, 150 (2): 772—785
Ashley MK, Grant M, Grabov A, 2006. Plant responses to potassium deficiencies: a role for potassium transport proteins[J]. Journal of Experimental Botany, 57 (2): 425—436
Cakmak I, Hengeler C, Marschner H, 1994. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency[J]. Journal of Experimental Botany, 45 (9): 1245—1250
Chen JP, Burke JJ, Xin ZG et al., 2006. Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance[J]. Plant, Cell and Environment, 29 (7): 1437—1448
Chen YF, Wang Y, Wu WH, 2008. Membrane transporters for nitrogen, phosphate and potassium uptake in plants[J]. Journal of Integrative Plant Biology, 50 (7): 835—848
Gierth M, Mser P, Schroeder JI, 2005. The potassium transporter AtHAK5 functions in K+ deprivationinduced highaffinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots[J]. Plant Physiology, 137 (3): 1105—1114
Guan LZ (关连珠), 2001. Soil fertilizer science (土壤肥料学) [M]. Beijing: Chinese Agricultural Press, 138
Hafsi C, Russo MA, Sgherri C et al., 2009. Implication of phospholipase D in response of Hordeum vulgare root to shortterm potassium deprivation[J]. Journal of Plant Physiology, 166 (5): 499—506
Hermans C, Hammond JP, White PJ et al., 2006. How do plants respond to nutrient shortage by biomass allocation?[J]. Trends in Plant Science, 11 (12): 610—617
Hong YY, Devaiah SP, Bahn SC et al., 2009. Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth[J]. The Plant Journal, 58 (3): 376—387
Hong YY, Pan XQ, Welti R et al., 2008. Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis[J]. Plant Cell, 20 (3): 803—816
Hong YY, Zhang WH, Wang XM, 2010. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity[J]. Plant, Cell and Environment, 33 (4): 627—635
Leigh RA, Wyn Jones RG, 1984. A hypothesis relating critical potassiun concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytologist, 97 (1): 1—13
Li HW (李宏伟), Jiang CXL (江村西罗), Li H (李琥) et al., eds. 2003. Baima Xueshan National Nature Reserve (白马雪山国家级自然保护区) [M]. Kunming: The Nationalities Publishing House of Yunnan, 58
Li MY, Welti R, Wang XM, 2006a. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of Phospholipases Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorusstarved plants[J]. Plant Physiology, 142 (2):
750—761
Li MY, Qin CB, Welti R et al., 2006b. Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphatelimited growth but do not affect root hair patterning[J]. Plant Physiology, 140 (2): 761—770
Li WQ, Li MY, Zhang WH et al., 2004. The plasma membranebound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana[J]. Nature Biotechnology, 22 (4): 427—433
Li WQ, Wang RP, Li MY et al., 2008. Differential degradation of extraplastidic and plastidic lipids during freezing and postfreezing recovery in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 283 (1): 461—468
Lu RK (鲁如坤), 1989. General status of nutrients (N, P, K) in soils of China[J]. Acta Pedologica Sinica (土壤学报), 26 (3): 280—286
Ma TL, Wu WH, Wang Y, 2012. Transcriptome analysis of rice root responses to potassium deficiency[J]. BMC Plant Biology, 12 (1): 161
Marschner H, 1995. Mineral nutrition of higher plants. London: Academic Press, 310
Russo MA, Quartacci MF, Izzo R et al., 2007. Long and shortterm phosphate deprivation in bean roots: Plasma membrane lipid alterations and transient stimulation of phospholipases[J]. Phytochemistry, 68 (11): 1564—1571
Tocquin P, Corbesier L, Havelange A et al., 2003. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana[J]. BMC Plant Biology, 3 (2): 1—10
Verkleij AJ, de Maagd R, LeunissenBijvelt J et al., 1982. Divalent cations and chlorpromazine can induce nonbilayer structures in phosphatidic acidcontaining model membranes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 684 (2): 255—262
Wang C, Chen HF, Hao QN et al., 2012. Transcript profile of the response of two soybean genotypes to potassium deficiency[J]. PLoS ONE, 7 (7): e39856
Welti R, Li WQ, Li MY et al., 2002. Profiling membrane lipids in plant stress responses[J]. Journal of Biological Chemistry, 277 (35): 31994—32002
Yang XE, Liu JX, Wang WM et al., 2004. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes[J]. Journal of Plant Nutrition, 27 (5): 837—852
Zhang XD, Wang RP, Zhang FJ et al., 2012. Lipid profiling and tolerance to lowtemperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana[J]. Biologia Plantarum, 1—5
Zhao J, Wang CX, Bedair M et al., 2011. Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana[J]. PLoS ONE, 6 (12): e28086
Zheng GW, Tian BO, Zhang FJ et al., 2011. Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels[J]. Plant, Cell and Environment, 34 (9): 1431—1442
|