Plant Diversity ›› 2020, Vol. 42 ›› Issue (04): 229-254.DOI: 10.1016/j.pld.2020.06.011
Robert A. Spicera,b, Alexander Farnsworthc, Tao Sua
收稿日期:
2020-04-18
修回日期:
2020-06-11
出版日期:
2020-08-25
发布日期:
2020-10-14
通讯作者:
Robert A. Spicer
基金资助:
Robert A. Spicera,b, Alexander Farnsworthc, Tao Sua
Received:
2020-04-18
Revised:
2020-06-11
Online:
2020-08-25
Published:
2020-10-14
Contact:
Robert A. Spicer
Supported by:
摘要: The biodiversity of the Himalaya, Hengduan Mountains and Tibet, here collectively termed the Tibetan Region, is exceptional in a global context. To contextualize and understand the origins of this biotic richness, and its conservation value, we examine recent fossil finds and review progress in understanding the orogeny of the Tibetan Region. We examine the deep-time origins of monsoons affecting Asia, climate variation over different timescales, and the establishment of environmental niche heterogeneity linked to topographic development. The origins of the modern biodiversity were established in the Eocene, concurrent with the formation of pronounced topographic relief across the Tibetan Region. High (>4 km) mountains to the north and south of what is now the Tibetan Plateau bounded a Paleogene central lowland (<2.5 km) hosting moist subtropical vegetation influenced by an intensifying monsoon. In mid Miocene times, before the Himalaya reached their current elevation, sediment infilling and compressional tectonics raised the floor of the central valley to above 3000 m, but central Tibet was still moist enough, and low enough, to host a warm temperate angiosperm-dominated woodland. After 15 Ma, global cooling, the further rise of central Tibet, and the rain shadow cast by the growing Himalaya, progressively led to more open, herb-rich vegetation as the modern high plateau formed with its cool, dry climate. In the moist monsoonal Hengduan Mountains, high and spatially extensive since the Eocene but subsequently deeply dissected by river incision, Neogene cooling depressed the tree line, compressed altitudinal zonation, and created strong environmental heterogeneity. This served as a cradle for the then newly-evolving alpine biota and favoured diversity within more thermophilic vegetation at lower elevations. This diversity has survived through a combination of minimal Quaternary glaciation, and complex relief-related environmental niche heterogeneity. The great antiquity and diversity of the Tibetan Region biota argues for its conservation, and the importance of that biota is demonstrated through our insights into its long temporal gestation provided by fossil archives and information written in surviving genomes. These data sources are worthy of conservation in their own right, but for the living biotic inventory we need to ask what it is we want to conserve. Is it 1) individual taxa for their intrinsic properties, 2) their services in functioning ecosystems, or 3) their capacity to generate future new biodiversity? If 2 or 3 are our goal then landscape conservation at scale is required, and not just seed banks or botanical/zoological gardens.
Robert A. Spicer, Alexander Farnsworth, Tao Su. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story[J]. Plant Diversity, 2020, 42(04): 229-254.
Robert A. Spicer, Alexander Farnsworth, Tao Su. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story[J]. Plant Diversity, 2020, 42(04): 229-254.
Acosta, R.P., Huber, M., 2020. Competing topographic mechanisms for the summer indo-asian monsoon. Geophys. Res. Lett. 47 e2019GL085112. Ai, K., Shi, G., Zhang, K., Ji, J.L., Song, B.W., Shen, T., Guo, S.-X., 2019. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeography, Palaeoclimatology,. Palaeoecology 515, 142-151. Allègre, C.J., Courtillot, V., Tapponier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Schärer, U., Marcoux, J., Burg, J.P., Girardeau, J., Armijo, R., Gariépy, C., Gopel, C., Li, T.D., Xiao, X., Chang, C.F., Li, G.W., Lin, B., Teng, J., Wang, N., Han, T., Wang, X., Den, W., Sheng, H., Cao, Y., Zhou, J., Qiu, H.N., Bao, P., Wang, S., Wang, B., Zhou, Y., Xu, R., 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307, 17-22. An, Z.S., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of asian monsoons and phased uplift of the himalayaneTibetan plateau since late Miocene times. Nature 411, 62-66. Anagnostou, E., Jihn, E.H., Edgar, K.M., Foster, G.L., Ridgwell, A., Inglis, G.N., Pancost, R.D., Lunt, D.J., Pearson, P.N., 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380-384. Antal, J.S., Awasthi, N., 1993. Fossil flora from the Himalayan foot hills of Darjeeling foot-hills of Darjeeling District,West Bengal and its palaeoecological and phytogeographical significance. Palaeobotanist 42, 14-60. Antal, J.S., Prasad, M., 1996a. Dipterocarpaceous fossil leaves from grish river section in himalayan foot hills near oodlabari, darjeeling district, West Bengal. Palaeobotanist 43, 73-77. Antal, J.S., Prasad, M., 1996b. Some more leaf-impressions from the himalayan foothills of darjeeling district, West Bengal, India. Palaeobotanist 43, 1-9. Antal, J.S., Prasad, M., 1997. Angiospermous fossil leaves from the Siwalik sediments(Middle-Miocene) of darjeeling district, West Bengal. Palaeobotanist 46, 95-104. Antal, J.S., Prasad, M., 1998. Morphotaxonomic study of some more fossil leaves from the lower Siwalik sediments of West Bengal, India. Palaeobotanist 47, 86-98. Antonelli, A., 2015. Multiple origins of mountain life. Nature 524, 300-301. Antonelli, A., Kissling, W.D., Flantua, S.G.A., Bermúdez, M.A., Mulch, A., MuellnerRiehl, A.N., Kreft, H., Linder, P.L., Badgley, C., Fjeldså, J., Fritz, S.A., Rahbeck, C., Herman, F., Hooghiemstra, H., Hoorn, C., 2018. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718-725. Armstrong, H.A., Wagner, T., Herroingshaw, L.G., Farnsworth, A.J., Lunt, D.J., Harland, M., Imber, J., Lopston, C., Atar, E.F.L., 2016. Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic Boreal Seaway. Paleoceanography 31, 1041-1053. Awasthi, N., 1992. Changing patterns of vegetation through Siwalik succession. Palaeobotanist 40, 312-327. Bande, M.B., Prakash, U., 1984. In: Sharma, A.K.e.a. (Ed.), Occurrence of Evodia, Amoora and Sonneratia from the Plaeogene of India. Symposium of Eovolutionary Botany and Biostratigraphy, Calcutta, pp. 97-114. Barnosky, A.D., Hadly, E.A., Gonzalez, P., Head, J., Polly, P.D., Lawing, A.M., Eronen, J.T., Ackerly, D.D., Alex, K., Biber, E., Blois, J., Brashares, J., Ceballos, G., Davis, E., Dietl, G.P., Dirzo, R., Doremus, H., Fortelius, M., Greene, H.W., Hellman, J., Hickler, T., Jackson, S.T., Kemp, M., Koch, P.I., Kremen, C., Lindsey, E.L., Looy, C., Marshall, C.R., Mendenhall, C., Mulch, A., Mychajliw, A.M., Nowak, C., Ramakrishnan, U., Schnitzier, J., Shrestha, K.D., Soalari, K., Stegner, L., Stegner, A.A., Stenseth, N.C., Wake, M.H., Zhang, Z., 2017. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355 eaah4787. Berger, A., Loutre, M.F., 1994. Astronomical forcing through geological time. In: de Boer, P.L., Smith, D.G. (Eds.), International Association of Sedimentologists. Special Publication, pp. 15-24. Berger, A., Loutre, M.F., Mélice, J.L., 2006. Equatorial insolation: from precession harmonics to eccentricity frequencies. Clim. Past 2, 131-136 hal-00298053. BGMRX, 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing. Boos, W.R., Kuang, Z.-M., 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218-222. Botsyun, S., Sepulchre, P., Donnadieu, Y., Risi, C., Licht, A., Caves Rugenstein, J.K., 2019. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science 363, eaaq1436. Briggs, J.C., 2003. The biogeography and tectonic history of India. J. Biogeogr. 30(381-388), 397-425. Burchfiel, B.C., Chen, Z., 2012. Tectonics of the southeast Tibetan Plateau and its adjacent foreland. Geol. Soc. Am. Mem. 210, 1-164. Cao, S.Y., Neubauer, F., Liu, J.l., Censer, J., Leiss, B., 2011. Exhumation of the diancang Shan metamorphic complex along the Ailao Shan-Red river belt, southwestern yunnan, China: evidence from Ar-40/Ar-39 thermochronology. J. Asian Earth Sci. 42, 525-550. Cao, K., Wang, G.-C., Leloup, P.H., Mahéo, G., Xu, Y., van der Beek, P.A., Replumaz, A., Zhang, K., 2019. Oligocene-Early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics 38, 374-391. Carmichael, J.W., Inglis, G.N., Badger, M.P.S., Naafs, B.D.A., Behrooz, L., Remmelzwaal, S., Monteiro, F.M., Rohrssen, M., Farnsworth, A., Buss, H., Dickson, A.J., Valdes, P.J., Lunt, D.J., Pancost, R.D., 2017. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Global Planet. Change 157, 114-138. Cautley, P.T., 1835. Letter noticing the discovery of further fossils in vast quantity in the Siwalik Range. J. Asia. Soc. Bengal 4, 585-587. Chakraborty, A., 2020. Mountains as a global heritage: arguments for conserving the natural diversity of mountain regions. Heritage 3, 198-207. Chatterjee, S., Scotese, C.R., 1999. The breakup of Gondwana-land and the evolution and biogeography of the Indian plate. Proc. Indiana Acad. Sci. 65A, 397-425. Chatterjee, S., Scotese, C.R., 2010. The wandering Indian plate and its changing biogeography during the Late CretaceouseEarly Tertiary period. In:Bandopadhyay, S. (Ed.), New Aspects of Mesozoic Biogeography. Springer-Verlag, Berlin Heidelberg, Germany, pp. 105-126. Chatterjee, S., Goswami, A., Scotese, C.R., 2013. The longest voyage: tectonic, magmatic, paleoclimatic evolution of Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238-267. https://doi.org/10.1016/j.gr.2012.07.001. Cheng, Y.-M., Wang, Y.-F., Li, C.S., 2014. Late Miocene wood flora associated with the Yuanmou hominoid fauna from Yunnan, southwestern China and its palaeoenvironmental implication. J. Plaeogeogr. 3, 323-330. Chitaley, S.D., 1960. A new specimen of Nipa fruit from Mohgaonkalan cherts. Nature 186, 495. Chitaley, S.D., Nambudiri, E.M.V., 1995. Anatomy of Nypa fruit reviewed from new specimens from the Deccan Intertrappean flora of India. In: Pant, D.D. (Ed.), Global Environment and Diversification of Plants through Geological Time. South Asian Publishers, Allahabad, pp. 83-94. Clark, M.K., Royden, L.H., 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28, 703-706. Clark, M.K., Royden, L.H., Whipple, K.X., House, M.A., Zhang, X., Tang, W., Chen, L., 2003. Late Cenozoic uplift of southeastern Tibet: implications for tectonicclimate coupling. “Monsoon Evolution and Tectonics-Climate Linkage in East Asia and its Marginal Seas during the Late Cenozoic”. In: Programme with Abstracts Tokyo, pp. 7-8. Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K., Burchfiel, B.C., Zhang, B., Tang, W., Wang, E., Chen, L., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23, TC1006. Clark, M.K., House, M.A., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., 2005. Late cenozoic uplift of southeastern Tibet. Geology 33, 525-528. Clark, M.K., Royden, L.H., Whipple, K., Burchfiel, B.C., Zhang, X., Tang, W., 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J. Geophys. Res. 111, F03002. Clark, M.K., Farley, K.A., Zheng, D., Wang, Z., Duvall, A.R., 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (UeTh)/He ages. Earth Planet Sci. Lett. 296, 78-88. Claussen, M., Fohlmeister, J., Ganopolsky, A., Brokin, V., 2006. Vegetation dynamics amplifies precessional forcing. Geophys. Res. Lett. 33, L09709. Clift, P.D., Carter, A., Wysocka, A., Long, H.V., Zheng, H., Neubeck, N., 2020. A late Eocene-Oligocene through-flowing river between the upper Yangtze and south China sea. G-cubed. https://doi.org/10.1029/2020GC009046. Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, X.-L., 2013. Updated 2019, the ICS international chronostratigraphic chart. Episodes 36, 199-204. Corlett, R., Tomlinson, K., 2019. Climate change and edaphic specialists: irresistible force meets immovable object? Trends Ecol. Evol. 35, 367-376. Currie, B.S., Polissar, P.J., Rowley, D., Ingals, M., Li, S., Olack, G., Freeman, K.H., 2016. Multiproxy palaeoaltimetry of the late oligocene-pliocene Oiyug Basin, southern Tibet. Am. J. Sci. 316, 401-436. Dai, J., Zhao, X., Wang, C., Zhu, L., Li, Y., Finn, D., 2012. The vast proto-Tibetan plateau: new constraints from Paleogene Hoh Xil basin. Gondwana Res. 22, 434-446. DeCelles, P.G., Kapp, P., Ding, L., Gehrels, G., 2007a. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull. 119, 654-680. DeCelles, P.G., Quade, J., Kapp, P., Fan, M., Dettman, D.L., Ding, L., 2007b. High and dry in central Tibet during the late Oligocene. Earth Planet Sci. Lett. 253, 389-401. Del Rio, C., Wang, T.-X., Liu, J., Liang, S.-L., Spicer, R.A., Wu, F.-X., Zhou, Z.-K., Su, T., 2020. Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae(Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its biogeographic implications. Am. J. Bot. 107, 1-13. Deng, T., Wu, F.-X., Zhou, Z.-K., Su, T., 2020. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci. China Earth Sci. 63, 172-187. https://doi.org/10.1007/s11430-019-9507-5. Dewey, J.F., Shackleton, R.M., Chang, C.F., Sun, Y., 1988. The tectonic evolution of the Tibetan Plateau. Trans. Royal Soc. London A327, 379-413. Ding, L., Kapp, P., Wan, X., 2005. PaleoceneeEocene record of ophiolite obduction and initial IndiaeAsia collision, south central Tibet. Tectonics 24, TC3001. Ding, L., Xu, Q., Yue, Y.H., Wang, H.Q., Cai, F.I., Li, S.Q., 2014. The andean-type gangdese mountains: paleoelevation record from the paleoceneeeocene linzhou basin. Earth Planet Sci. Lett. 392, 250-264. Ding, L., Maksatbeck, S., Cai, F.L., Wang, H.Q., Song, P.P., Ji, W.Q., Xu, Q., Zhang, L.Y., Muhammad, Q., Upendra, B., 2017a. Processes of initial collision and suturing between India and Asia. Sci. China Earth Sci. 60, 635-651. Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer, T.E.V., Yue, Y., Shukla, A., Srivastava, G., Khan, M.A., Bera, S., Mehrotra, R.C., 2017b. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45, 215-218. Dubiel, R.F., Parrish, J.T., Parrish, J.M., Good, S.C., 1991. The pangaean megamonsoon-evidence from the upper triassic chinle formation, Colorado plateau. Palaios 6, 347-370. England, P.C., Houseman, G.A., 1988. The mechanics of the Tibetan Plateau. Phil. Trans. Roy. Soc. Lond. A326, 301-320. Fang, A.M., Yan, Z., Liu, X.H., Pan, Y.S., Li, J.L., 2005. The flora of the Liuqu formation in South Tibet and its climate implications. Acta Micropalaeontol. Sin. 44, 435-445. Farnsworth, A., Lunt, D.J., Robinson, S.A., Valdes, P.J., Roberts, W.H.G., Clift, P.D., Markwick, P.J., S, T., Wrobel, N., Bragg, F., Kelland, S.-J., Pancost, R.D., 2019. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697. Favre, A., Packert, M., Pauls, S.U., Jahnig, S.C., Uhl, D., Michalak, I., MuellnerRiehl, A.N., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. Foster, G.L., Hull, P., Lunt, D.J., Zachos, J.C., 2018. Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Phil. Trans. Roy. Soc. Lond. 376, 20170086. Garzione, C.N., David, L.D., D, L., Quade, J., DeCelles, P.G., Butler, R.F., 2000. High times on the Tibetan plateau: palaeoelevation of the thakkhola graben, Nepal. Geology 28, 339-342. Geng, G.-C., Tao, J.-R., 1982a. Tertiary Plants from Xizang Xizang Palaeontology. Science Press, Beijing, pp. 110-125. Geng, G.C., Tao, J.R., 1982b. The Tertiary Paleobotany of Tibet. Chinese Academy of Sciences, Beijing. Gilbert, C.C., Patel, B.A., Singh, N.P., Campisano, C.J., Fleagle, J.G., Rust, K.L., Pugh, K.D., Patnaik, R., 2017. New fossil primates from the lower Siwaliks of India. Am. J. Phys. Anthropol. (Suppl 64). Gourbet, L., Leloup, P.H., Paquette, J.-L., Sorrel, P., Maheo, G., Wang, G.-C., Xu, Y., Cao, K., Antoine, P.-O., Eymard, I., Liu, W., Lu, H., Replumaz, A., Chevalier, M.-L., Zhang, K., Wu, J., Shen, T., 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan Plateau evolution. Tectonophysics 700-701, 162-179. Guillot, S., Goussin, F., Airaghi, L., Replumaz, A., deSigoyer, J., Cordier, C., 2019. How and when did the Tibetan plateau grow? Russ. Geol. Geophys. 60, 957-977. Guo, S.-X., 1975. The Plant Fossils from the Xigaze Group on Mount Jolmo Lungma Feng Region. (A Report of Scientific Expedition on Mount Jolmo Lungma Feng Region) (1965-1968). Science Press, Beijing. Guo, S.-X., 1981. On the Elevation and Climatic Changes of the Qinghai-Xizang Plateau Based on Fossil Angiosperms, Qinghai-Xizang (Tibet) Plateau. Science Press and Gordon and Breach. Science Publications, Inc, New York, Beijing, pp. 201-206. Guo, S.-X., Spicer, R.A., Widdowson, M., Herman, A.B., Domogatskaya, K.V., 2019. The composition of the middle Miocene (15 Ma) namling palaeoflora, south central Tibet, in the context of other Tibetan and himalayan floras. Rev. Palaeobot. Palynol. 271, 104088. Han, C., Xu, M., Huang, Z., Wang, L., Xu, M., Mi, N., Yu, D., Guo, T., Huo, S., Tian, M., Bi, Y., 2020. Layered crustal anisotropy and deformation in the SE Tibetan plateau revealed by Markov-Chain-Monte-Carlo inversion of receiver functions. Phys. Earth Planet. In. https://doi.org/10.1016/j.pepi.2020.106522. Harsch, M.A., Hulme, P.E., McGlone, M.S., Duncan, R.P., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040-1049. Hasegawa, H., Tada, R., Jiang, X., Suganuma, Y., Imsamut, S., Charusiri, P., Ichinnorov, N., Khand, Y., 2012. Drastic shrinking of the Hadley circulation during the mid-cretaceous supergreenhouse. Clim. Past 8, 1323-1337. Hays, J.D., Imbrie, J., N.J., S., 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121-1132. Hazra, T., Spicer, R.A., Hazra, M., Mahato, S., Spicer, T.E.V., Bera, S., Valdes, P.J., Farnsworth, A., Hughes, A.C., Yang, J., Khan, A.M., 2020. Latest Neogene monsoon of the Chotanagpur Plateau, eastern India, as revealed by fossil leaf architectural signatures. Palaeogeography, Palaeoclimatology. Palaeoecology 545, 109641. He, H.-Y., Sun, J., Li, Q., Zhu, R., 2012. New age determination of the Cenozoic Lunpola basin, central Tibet. Geol. Mag. 149, 141-145. He, Y., Li, N., Wang, Z., Wang, H., yang, G., Xiao, L., Wu, J., Sun, B., 2014. Quercus yangyiensis sp. nov. From the late Pliocene of baoshan, yunnan and its paleoclimatic significance. Geologica Sinica 88, 738-747. https://doi.org/10.1111/1755-6724.12234. Hetzel, R., Dinkl, I., Haider, V., Strobl, M., von Eynatten, H., Ding, L., Frei, D., 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology 39, 983-986. Hoke, G.D., 2018. Geochronology transforms our view of how Tibet's southeast margin evolved. Geology 46, 95-96. Hoke, G.D., Liu-Zeng, J., Hren, M.T., Wissink, G.K., Garzione, C.N., 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet Sci. Lett. 394, 270-278. Hoorn, C., Perrigo, A., Antonelli, A., 2018. Mountains, climate and biodiversity: an introduction. In: Hoorn, C., Perrigo, A., Antonelli, A. (Eds.), Mountains, Climate and Biodiversity. Wiley-Blackwell, Chichester, UK, pp. 1-13. Hsu, J., Tao, J.-R., Sun, X.-J., 1973. On the discovery of Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology. Acta Botan. Sinensis 15, 103-119. Huang, J., Su, T., Li, S.-F., Wu, F.-X., Deng, T., Zhou, Z., 2020. Pliocene flora and paleoenvironment of Zanda Basin, Tibet, China. Science China. Earth Sci. 63, 212-223. https://doi.org/10.1007/s11430-019-9475-2. Huang, Y.-J., Jia, L., Wang, Q., Mosbrugger, V., Utescher, T., Su, T., Zhou, Z.-K., 2016. Cenozoic plant diversity of yunnan: a review. Plant Div. 38, 271-282. Inglis, G.N., Farnsworth, A., Collinson, M.E., Carmichael, M.J., Naafs, B.D.A., Lunt, D.J., Valdes, P.J., Pancost, R.D., 2019. Terrestrial environmental change across the onset of the PETM and the associated impact on biomarker proxies: a cautionary tale. Global Planet. Change 181, 102991. Jacques, F.M.B., Su, T., Spicer, R.A., Xing, Y.-W., Huang, Y.-J., Zhou, Z.-K., 2014. Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology. Palaeoecology 411, 208-215. Jacques, F.M.B., Shi, G., Sua, T., Zhou, Z., 2015. A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev. Palaeobot. Palynol. 216, 76-91. Jaeger, J.J., Courtillot, V., Tapponnier, P., 1989. Paleontological view of the ages of the Deccan traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology 17, 316-319. Jia, L.-B., Su, T., Huang, Y.-J., Wu, F.-X., Deng, T., Zhou, Z.-K., 2019. First fossil record of Cedrelospermum (ulmaceae) from the QinghaieTibetan plateau: implications for morphological evolution and biogeography. J. Systemat. Evol. 57, 94-104. Jiang, H., Su, T., Wong, W.-O., Wu, F., Huang, J., Shi, G., 2019. Oligocene Koelreuteria(Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J. Asian Earth Sci. 175, 99-108. Jin, C., Liu, Q., Liang, W., Roberts, A.P., Sun, J., Hu, P., Zhao, X., Su, Y., Jiang, Z., Liu, Z., Duan, Z., Yang, H., Yuan, S., 2018. Magnetostratigraphy of the fenghuoshan group in the Hoh Xil basin and its tectonic implications for IndiaeEurasia collision and Tibetan plateau deformation. Earth Planet Sci. Lett. 486, 41-53. https://doi.org/10.1016/j.epsl.2018.01.010. Kapp, P., DeCelles, P.G., 2019. Mesozoic-cenozoic geological evolution of the himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159-254. Kapp, P., DeCelles, P.G., Leier, A.L., Fabijanic, J.M., He, S., Pullen, A., Gehrels, G.E., Ding, L., 2007. The Gangdese retroarc thrust belt revealed. GSA Today 17, 4-9. Kapur, V.V., Das, D.B., Bajpai, S., Prasad, G.V.R., 2017. First mammal of Gondwanan lineage in the early Eocene of India. Comptes Rendus Palevol 16, 721-737. Kathal, P.K., Srivastava, R., Mehrotra, R.C., Alexander, P.O., 2017. Rhizopalmoxylon nypoides a new palm root from the Deccan Intertrappean beds of Sagar, Madhya Pradesh, India. J. Earth Syst. Sci. 126, 35. Kelly, S., Baumont, C., Butler, J.P., 2019. Inherited terrane properties explain enigmatic post-collisional Himalayan-Tibetan evolution. Geology 48, 8-14. Khan, A.M., Bera, S., 2014. New lauraceous species from the Siwalik forest of Arunachal Pradesh, eastern Himalaya, and their palaeoclimatic and palaeogeographic implications. Turk. J. Bot. 38, 453-464. Khan, M.A., Stern, R.J., Gribble, R.F., Windley, B.F., 1997. Geochemical and isotopic constraints on subduction polarity, magma sources, and palaeogeography of the Kohistan intra-oceanic arc, northern Pakistan Himalaya. J. Geologi. Soc. london 154, 935-946. Khan, S.D., Walker, D.J., Hall, S.A., Burke, K.C., Shah, M.T., Sytockli, L., 2009. Did the Kohistan-Ladakh island arc collide first with India? Geol. Soc. Am. Bull. 121, 366-384. Khan, M.A., Ghosh, R., Bera, S., Spicer, R.A., Spicer, T.E.V., 2011. Floral diversity during plio-pleistocene Siwalik sedimentation (kimin formation) in Arunachal Pradesh, India, and its palaeoclimatic significance. Palaeobiodivers. Palaeoenviron. 91, 237-255. Khan, M.A., Spicer, R.A., Bera, S., Ghosh, R., Yang, J., Spicer, T.E.V., Guo, S.-X., Su, T., Jacques, F.M.B., Grote, P.J., 2014a. Miocene to Pleistocene floras and climate of the eastern himalayan Siwaliks, and new palaeoelevation estimates for the namlingeOiyug Basin, Tibet. Global Planet. Change 113, 1-10. Khan, M.A., Spicer, R.A., Spicer, T.E.V., Bera, S., 2014b. Fossil evidence of insect folivory in the eastern Himalayan Neogene Siwalik forests. Palaeogeography, Palaeoclimatology. Palaeoecology 430, 264-277. Khan, M.A., Bera, M., Spicer, R.A., Spicer, T.E.V., Bera, S., 2019. Palaeoclimatic estimates for a latest miocene-pliocene flora from the Siwalik group of Bhutan: evidence for the development of the south asian monsoon in the eastern Himalaya. Palaeogeography, palaeoclimatology. Palaeoecology 514, 326-335. Klaus, S., Morley, R.J., Plath, M., Zhang, Y.-P., Li, J.-T., 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132. Körner, C., 2003. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin Heidelburg. Krause, D.W., Prasad, G.V.R., Koenigswald, W.V., Sahni, A., Grine, F.E., 1997. Cosmopolitanism among gondwanan late cretaceous mammals. Nature 390, 504-507. Kuhle, M., 1998. Reconstruction of the 2.4 million km2 late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate. Quat. Int. 45, 71-108. Kundal, S.N., Bhadur, G., Kumar, S., 2017. Elephas cf. E. planifrons (elephantidae, mammalia) from upper Siwalik subgroup of samba district, Jammu and Kashmir, India. Vertebr. Palasiat. 55, 59-70. Lai, W., Hu, X., Garzanti, E., Xu, Y., Ma, A., Li, W., 2019. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial LhasaQiangtang collision. Gondwana Res. 73, 136-152. Laskowski, A.K., O’rme, D.A., Cai, F., Ding, L., 2019. The ancestral Lhasa River: a late cretaceous trans-arc river that drained the protoeTibetan plateau. Geology 47, 1029-1033. Leary, R.J., DeCelles, P.G., Quade, J., Gehrels, G.E., Waanders, G., 2016. The Liuqu Conglomerate, southern Tibet: early Miocene basin development related to deformation within the Greater Counter Thrust system. Lithosphere 8, 427-450. Leary, R.J., Quade, J., DeCelles, P., 2017. Evidence from paleosols for low to moderate elevation of the India-Asia suture zone during mid-Cenozoic time. Geology 45, 399-402. Leloup, P.H., Lacassin, R., Tapponier, P., Schärer, U., Zhong, D.-L., Liu, X.-H., Zhang, L.-S., Ji, S.-C., Trong Tring, P., 1995. The Ailao Shan-Red river shear zone (yunnan, China), tertiary transform boundary of indochina. Tectonophysics 251, 3-84. Leuschner, D.C., Sirocko, F., 2003. Orbital insolation forcing of the Indian Monsoon e a motor for global climate changes? Palaeogeography, Palaeoclimatology. Palaeoecology 197, 83-95. Li, W.-Y., 1998. Quaternary Vegetation and Environment in China. Science Press, Beijing. Li, H.-M., Guo, S.-X., 1976. Miocene flora from namling, xizang. Acta Palaeontol. Sin. 15, 7-18. Li, J.-S., Batten, D.,J., 2004. Early cretaceous palynofloras from the Tanggula mountains of the northern qinghai-xizang (Tibet) plateau, China. Cretac. Res. 25, 531-542. Li, J.G., Zhou, Y., 2001. Pliocene palynoflora from the Zanda Basin west Xizang(Tibet), and the palaeoenvironment (in Chinese). Acta Micropalaeontologica Sinica 18, 89-96. Li, X.-H., Zhu, X.-X., Niu, Y.-T., Sun, H., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Systemat. Evol. 52, 280-288. Li, S., Currie, B.S., Rowley, D.B., Ingalls, M., 2015a. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet Sci. Lett. 432, 415-424. Li, S.-H., Deng, C., Dong, W., Sun, L., Liu, S., Qin, H., Yin, J., Ji, X., Zhu, R., 2015c. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault. Tectonophysics 655, 213-226. Li, Y.-L., Wang, C.-S., Dai, J.-G., Xu, G.-Q., Hou, Y.-L., Li, X.-H., 2015b. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review. Earth Sci. Rev. 143, 36-61. Li, S.H., Advokaat, E.L., van Hinsbergen, D.J.J., Koymans, M., Deng, C., Zhu, R., 2017. Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: review and updated kinematic reconstruction. Earth Sci. Rev. 171, 58-77. Li, L., Garzione, C.N., Fan, M., Li, X.-W., Li, X.-Z., 2019. Jurassic sedimentation in the south-central Qiangtang terrane reveals successive terrane collisions in central Tibet. Geosphere 15. https://doi.org/10.1130/GES01649.1. Li, S., Yin, C., Guilmette, C., Ding, L., Zhang, J., 2019. Birth and demise of the bangongnujiang tethyan ocean: a review from the gerze area of central Tibet. Earth-Sci. Rev. 198, 102907. https://doi.org/10.1016/j.earscirev.2019.102907. Li, S.-H., Ji, X.-P., Harrison, T., Deng, C.-L., Wang, S.-Q., Wang, L., Zhu, R.-X., 2020a. Uplift of the Hengduan Mountains on the southeastern margin of the Tibetan Plateau in the late Miocene and its paleoenvironmental impact on hominoid diversity. Palaeogeography, Palaeoclimatology. Palaeoecology 109794. https://doi.org/10.1016/j.palaeo.2020.109794. Li, S.-H., Su, T., Spicer, R.A., Xu, C.-L., Sherlock, S., Halton, A., Hoke, G., Tian, Y.-M., Zhou, Z.-K., Deng, C.-L., Zhu, R.-X., 2020b. Oligocene deformation of the Chuandian terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina. Tectonics. Li, S.-H., van Hinsbergen, D.J.J., Najman, Y., Jing, L.-Z., 2020c. Does pulsed Tibetan deformation correlate with Indian plate motion changes? Earth Planet Sci. Lett. 536, 116144. Linnemann, U., Su, T., Kunzmann, L., Spicer, R.A., Ding, W.-N., Spicer, T.E.V., Zieger, J., Hofmann, M., Moraweck, K., Gärtner, A., Gerdes, A., Marko, L., Zhang, S.-T., Li, S.-F., Tang, H.L., Huang, J., Mulch, A., Mosbrugger, V., Zhou, Z.-K., 2018. New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots. Geology 46, 3-6. Liu, X.-H., Xu, Q., Ding, L., 2016. Differential surface uplift: Cenozoic palaeoelevation history of the Tibetan Plateau. Sci. China Earth Sci. 59, 2105-2120. Liu, J., Su, T., Spicer, R.A., Tang, H., Deng, W.-Y.-D., Wu, F.-X., Srivastava, G., Spicer, T.E.V., Van Do, T., Deng, T., Zhou, Z.-K., 2019. Biotic interchange through lowlands of Tibetan plateau suture zones during Paleogene. Palaeogeography, palaeoclimatology. Palaeoecology 524, 33-40. Liu-Zheng, J., Tapponier, P., Gaudemer, Y., Ding, L., 2008. Quantifying landscape differences across the Tibetan plateau: implications for topographic relief evolution. J. Geophys. Res. 113, F04018. Liu-Zheng, J., Zhang, J., McPhillips, D., Reiners, P.W., Wang, W., Pik, R., Zeng, L., Hoke, G.D., Xie, K., Xiao, P., Zheng, D., Ge, Y., 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth Planet Sci. Lett. 490, 62-76. Low, S.L., Su, T., Spicer, T.E.V., Wu, F.-X., Deng, T., Xing, Y.-W., Zhou, Z.-K., 2019. Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. J. Syst. Palaeontol. 18, 415-431. https://doi.org/10.1080/14772019.2019.1611673. López-Pujol, J., Zhang, F.-M., Sun, H.-Q., Ying, T.-S., Ge, S., 2011. Centres of plant endemism in China: places for survival or for speciation? J. Biogeogr. 38, 1267-1280. Lu, L.-M., Mao, L.F., Yang, T.-N., Ye, J.-F., Liu, B., Li, H.-L., Miller, J.T., Mathews, S., Hu, H.-H., Niu, Y.-T., Peng, D.-X., Chen, Y.-H., Smith, S.A., Chen, M., Xiang, K.L., Le, C.-T., Dang, V.C., Lu, A.-M., Soltis, P.S., Soltis, D.E., Li, J.-H., Chen, Z.-D., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. Ma, P., Wang, C., Meng, J., Ma, C., Zhao, X., Li, Y., Wang, M., 2017. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Res. 48, 224-236. Mao, Z.-Q., Meng, Q.-Q., Fang, X.-M., Zhang, T., Wu, P., Yang, Y., Zhang, W., Zan, J., Tan, M.-Q., 2019. Recognition of tuffs in the middle-upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: constraints on stratigraphic age and implications for paleoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 525, 44-56. Meng, J., Coe, R.S., Wang, C.-S., Gilder, S., Zhao, X., Liu, H., Li, Y., Ma, P., Shi, K., Li, S., 2017. Reduced convergence within the Tibetan plateau by 26 Ma? Geophys. Res. Lett. 44 https://doi.org/10.1002/2017GL074219. Meyer, H.W., 2007. A Review of paleotemperature-lapse rate methods for estimating paleoelevation from fossil floras. Rev. Mineral. Geochem. 66, 155-171. Molnar, P., Stock, J.M., 2009. Slowing of India's Convergence with Eurasia since 20 Ma and its Implications for Tibetan Mantle Dynamics, Tectonics. American Geophysical Union. Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Rev. Geophys. 31, 357-396. Molnar, P., Boos, W.R., Battisti, D.S., 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet Sci. 38, 77-102. Morley, R.J., 2000. Origin and Evolution of Tropical Rain Forests. John Wiley and Sons, Chichester (UK). Morley, R.J., 2018. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209-234. Mosbrugger, V., Utescher, T., 1997. The coexistence approachda method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology,. Palaeoecology 134, 61-86. Mulch, A., 2016. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet Sci. Lett. 433, 180-191. Mulch, A., Chamberlain, C.P., 2006. Earth science e the rise and growth of Tibet. |
[1] | Yu-Juan Zhao, Gen-Shen Yin, Xun Gong. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation[J]. Plant Diversity, 2023, 45(05): 513-522. |
[2] | Dan-Qi Li, Lu Jiang, Hua Liang, Da-Hai Zhu, Deng-Mei Fan, Yi-Xuan Kou, Yi Yang, Zhi-Yong Zhang. Resolving a nearly 90-year-old enigma: The rare Fagus chienii is conspecific with F. hayatae based on molecular and morphological evidence[J]. Plant Diversity, 2023, 45(05): 544-551. |
[3] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests[J]. Plant Diversity, 2023, 45(05): 552-568. |
[4] | Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients?[J]. Plant Diversity, 2023, 45(04): 446-455. |
[5] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation[J]. Plant Diversity, 2023, 45(04): 456-468. |
[6] | Mahasin Ali Khan, Sumana Mahato, Robert A. Spicer, Teresa E.V. Spicer, Ashif Ali, Taposhi Hazra, Subir Bera. Siwalik plant megafossil diversity in the Eastern Himalayas:A review[J]. Plant Diversity, 2023, 45(03): 243-264. |
[7] | Qin Liu, Tian-Tian Xue, Xiao-Xia Zhang, Xu-Dong Yang, Fei Qin, Wen-Di Zhang, Lei Wu, Rainer W. Bussmann, Sheng-Xiang Yu. Distribution and conservation of near threatened plants in China[J]. Plant Diversity, 2023, 45(03): 272-283. |
[8] | Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains[J]. Plant Diversity, 2023, 45(01): 80-97. |
[9] | Ting-Shen Han, Zheng-Yan Hu, Zhi-Qiang Du, Quan-Jing Zheng, Jia Liu, Thomas Mitchell-Olds, Yao-Wu Xing. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot[J]. Plant Diversity, 2022, 44(05): 455-467. |
[10] | Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems[J]. Plant Diversity, 2022, 44(03): 231-242. |
[11] | Aabid Hussain Mir, Kiranmay Sarma, Krishna Upadhaya. Assessing the effectiveness of community managed forests for plant diversity conservation in Meghalaya, Northeast India[J]. Plant Diversity, 2022, 44(03): 243-254. |
[12] | Li-Shen Qian, Hong-Hua Shi, Xiao-Kun Ou, Hang Sun. Elevational patterns of functional diversity and trait of Delphinium (Ranunculaceae) in Hengduan Mountains, China[J]. Plant Diversity, 2022, 44(01): 20-29. |
[13] | Jing-Qiu Feng, Ji-Hua Wang, Shi-Bao Zhang. Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature[J]. Plant Diversity, 2022, 44(01): 101-108. |
[14] | Xiu-Jiao Zhang, Xiong-Fang Liu, De-Tuan Liu, Yu-Rong Cao, Zheng-Hong Li, Yong-Peng Ma, Hong Ma. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations[J]. Plant Diversity, 2021, 43(06): 472-479. |
[15] | Zhihua Zhou, Ronghong Shi, Yu Zhang, Xiaoke Xing, Xiaohua Jin. Orchid conservation in China from 2000 to 2020: Achievements and perspectives[J]. Plant Diversity, 2021, 43(05): 343-349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||