[1] Ahuja, I., Kissen, R., Bones, A.M., 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17, 73-90 [2] Albuquerque, M.B., Santos, R.C., Lima, L.M., et al., 2010. Allelopathy, an alternative tool to improve cropping systems. A review. Agron. Sustain. Dev. 31, 379-395 [3] Asai, T., Tena, G., Plotnikova, J., et al., 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983 [4] Bachheti, A., Sharma, A., Bachheti, R.K., et al., 2019. Plant allelochemicals and their various applications. In:Co-Evolution of Secondary Metabolites, Reference Series in Phytochemistry. pp. 1-25 [5] Breeze, E., 2019. Master MYCs:MYC2, the jasmonate signaling "master switch." Plant Cell 31, 9-10 [6] Chen, Y., Dong, J., Bennetzen, J.L., et al., 2017. Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci. Rep. 7, 12504 [7] Chen, S., Guo, B., 2004. Sustainable utilization of Chinese material medicine resources. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica [8] Chinchilla, D., Shan, L., He, P., et al., 2009. One for all:the receptor-associated kinase BAK1. Trends Plant Sci. 14, 535-541 [9] Chomel, M., Baldy, V., Guittonny, M., et al., 2020. Litter leachates have stronger impact than leaf litter on Folsomia candida fitness. Soil Biol. Biochem. 147 [10] Colson-Hanks, E.S., Deverall, B.J., 2001. Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. Plant Pathol. 49, 171-178 [11] Conrath, U., 2006. Systemic acquired resistance. Plant Signal. Behav. 1, 179-184 [12] Cortes-Barco, A.M., Goodwin, P.H., Hsiang, T., 2010a. Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59, 643-653 [13] Cortes-Barco, A.M., Hsiang, T., Goodwin, P.H., 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157, 179-189 [14] De Araujo, A.A., Roussos, S., 2002. A technique for mycelial development of ectomycorrhizal fungi on agar media. Appl. Biochem. Biotechnol. 98-100, 311-318 [15] Ding, X., Yang, M., Huang, H., et al., 2015. Priming maize resistance by its neighbors:activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease. Front. Plant Sci. 6, 830 [16] Donald, P.F., 2004. Society for conservation biology biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18, 17-37 [17] Dusa, A., 2019. Draw Venn Diagrams[R Package Venn version 1.8] [18] Encinas-Villarejo, S., Maldonado, A.M., Amil-Ruiz, F., et al., 2009. Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis at WRKY75 proteins in resistance. J. Exp. Bot. 60, 3043-3065 [19] Gaba, S., Lescourret, F., Boudsocq, S., et al., 2014. Multiple cropping systems as drivers for providing multiple ecosystem services:from concepts to design. Agron. Sustain. Dev. 35, 607-623 [20] Glazebrook, J., 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227 [21] Guerra, T., Schilling, S., Hake, K., et al., 2020. Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid- and SARD1-dependent immune memory in systemic acquired resistance. New Phytol. 225, 310-325 [22] Guo, C., Guo, R., Xu, X., et al., 2014. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J. Exp. Bot. 65, 1513-1528 [23] Harel, Y.M., Mehari, Z.H., Rav-David, D., et al., 2014. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104, 150-157 [24] Hickman, R., Van Verk, M.C., Van Dijken, A.J.H., et al., 2017. Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29, 2086-2105 [25] Mapk Group, 2002. Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends Plant Sci. 7, 301-308 [26] Ivette Perfecto, John Vandermeer, 2008. Biodiversity conservation in tropical agroecosystems:a new conservation paradigm. Annals of the New York Academy of ences p.173-200 [27] Jing, S.Q., Jiang, H.P., Liu, F.Y., et al., 2009. Canparison of seven ginsenoside contents in shengshaishen hongshen and linxiashen. Chinese Archives of Traditional Chinese Medicine [28] Kadota, Y., Liebrand, T.W.H., Goto, Y., et al., 2019. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol. 221, 2160-2175 [29] Kato-Noguchi, H., Fushimi, Y., Tanaka, Y., et al., 2011. Allelopathy of red pine:isolation and identification of an allelopathic substance in red pine needles. Plant Growth Regul. 65, 299-304 [30] Keesing, F., Ostfeld, R., 2015. Ecology. Is biodiversity good for your health? Science (New York, N.Y.) 349, 235-236 [31] Kim, D., Langmead, B., Salzberg, S.L., 2015a. HISAT:a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360 [32] Kim, Y.J., Zhang, D., Yang, D.C., 2015b. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 33, 717-735 [33] Li, B., Dewey, C., 2011. Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12:323. BMC bioinformatics 12, 323 [34] Li, C., He, X., Zhu, S., et al., 2006. Crop diversity for yield increase. PLoS One 4, e8049 [35] Li, J., Kolbasov, V., Pang, Z., et al., 2021. Evaluation of the control effect of SAR inducers against citrus Huanglongbing applied by foliar spray, soil drench or trunk injection. Phytopathology Research 3 [36] Liu, Y., Zhang, S., 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399 [37] Livak, K., Schmittgen, T., 2000. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Method. Methods. 25 [38] Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J., et al., 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165-178 [39] Luo, L., Guo, C., Wang, L., et al., 2019. Negative plant-soil feedback driven by Re-assemblage of the rhizosphere microbiome with the growth of panax notoginseng. Front. Microbiol. 10, 1597 [40] Luo, L.-F., Yang, L., Yan, Z.-X., et al., 2020. Ginsenosides in root exudates of Panax notoginseng drive the change of soil microbiota through carbon source different utilization. Plant Soil 455, 139-153 [41] Ma, X., Claus, L.A.N., Leslie, M.E., et al., 2020. Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature 581, 199-203 [42] Maeda, T., Ishiwari, H., 2012. Tiadinil, a plant activator of systemic acquired resistance, boosts the production of herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi in the tea plant Camellia sinensis. Exp. Appl. Acarol. 58, 247-258 [43] Mancuso, C., Santangelo, R., 2017. Panax ginseng and Panax quinquefolius:from pharmacology to toxicology. Food Chem. Toxicol. 107, 362-372 [44] Mao, G., Meng, X., Liu, Y., et al., 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639-1653 [45] Maobe, M.A.G., Gatebe, E., Gitu, L., et al., 2012. Profile of heavy metals in selected medicinal plants used for the treatment of diabetes, malaria and pneumonia in Kisii region, Southwest Kenya. Global J. Pharmacol. 6, 245-251 [46] Meng, X., Xu, J., He, Y., et al., 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25, 1126-1142 [47] Mhlongo, M.I., Piater, L.A., Madala, N.E., et al., 2018. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front. Plant Sci. 9, 112 [48] Mundt, C., 2002. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381-410 [49] Newton, A., Begg, G., Swanston, J., 2008. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309-322 [50] Nishizawa, A., Yabuta, Y., Yoshida, E., et al., 2006. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547 [51] Onate-Sanchez, L., Anderson, J.P., Young, J., et al., 2007. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol 143, 400-409 [52] Pelissier, R., Violle, C., Morel, J.B., 2021. Plant immunity:good fences make good neighbors? Curr. Opin. Plant Biol. 62, 102045 [53] Pertea, M., Pertea, G.M., Antonescu, C.M., et al., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295 [54] Piasecka, A., Jedrzejczak-Rey, N., Bednarek, P., 2015. Secondary metabolites in plant innate immunity:conserved function of divergent chemicals. New Phytol. 206, 948-964 [55] Pieterse, C.M., Van der Does, D., Zamioudis, C., et al., 2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489-521 [56] Pieterse, C.M., Zamioudis, C., Berendsen, R., et al., 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347-375 [57] Poelman, E., van Loon, J., Dicke, M., 2008. Consequences of plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13, 534-541 [58] Thomas, P., 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins:EBF1 and EBF2. J. Cell. 6 [59] Raivo Kolde, 2019. Pheatmap:Pretty Heatmaps. R Package Version 1.0.12 [60] Rentel, M.C., Lecourieux, D., Ouaked, F., et al., 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427, 858-861 [61] Ritchie, M.E., Phipson, B., Wu, D., et al., 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 [62] Sellam, A., Iacomi-Vasilescu, B., Hudhomme, P., et al., 2007. In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae. Plant Pathol. 56, 296-301 [63] Shettima, A.Y., Karumi, Y., Sodipo, O.A., et al., 2013. Gas chromatography-mass spectrometry (GC-MS) analysis of bioactive components of ethyl acetate root extract of Guiera senegalensis J.F. Gmel. Journal of Applied Pharmaceutical Science 3, 146-150 [64] Shi, Y., Liu, X., Fang, Y., et al., 2018. 2, 3-Butanediol activated disease-resistance of creeping bentgrass by inducing phytohormone and antioxidant responses. Plant Physiol. Biochem. 129, 244-250 [65] Solano, R., Stepanova, A., Chao, Q., et al., 1998. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. J Genes Development 12 [66] Song, S., Huang, H., Gao, H., et al., 2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26, 263-279 [67] Spoel, S.H., Dong, X., 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12, 89-100 [68] Su, J., Yang, L., Zhu, Q., et al., 2018. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol. 16, e2004122 [69] Suzuki, N., Miller, G., Morales, J., et al., 2011. Respiratory burst oxidases:the engines of ROS signaling. Curr. Opin. Plant Biol. 14, 691-699 [70] Syu, M.J., 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 55, 10-18 [71] Taha, S.M., Gadalla, S.A., 2017. Development of an efficient method for multi residue analysis of 160 pesticides in herbal plant by ethyl acetate hexane mixture with direct injection to GC-MS/MS. Talanta 174, 767-779 [72] Team, D., 2013. R:A Language and Environment for Statistical Computing Team RDCVienna, Austria2006 [73] Thomma, B., Nelissen, I., Eggermont, K., et al., 1999. Deficiency in phytoalexin production causes enhanced susceptibilty of Arabidopsis thaliana to the fungus Alternaria brassicola. Plant J.:for cell and molecular biology 19, 163-171 [74] Thomma, B.P., Nurnberger, T., Joosten, M.H., 2011. Of PAMPs and effectors:the blurred PTI-ETI dichotomy. Plant Cell 23, 4-15 [75] Tscharntke, T., Clough, Y., Bhagwat, S., et al., 2011. Multifunctional shade-tree management in tropical agroforestry landscapes-a review. J. Appl. Ecol. 48, 619-629 [76] Tsuda, K., Katagiri, F., 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13, 459-465 [77] Tsuda, K., Mine, A., Bethke, G., et al., 2013. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet. 9, e1004015 [78] Van den Berg, N., Swart, V., Backer, R., et al., 2021. Advances in understanding defense mechanisms in persea americana against phytophthora cinnamomi. Front. Plant Sci. 12, 636339 [79] Venegas-Molina, J., Molina-Hidalgo, F.J., Clicque, E., et al., 2021. Why and how to dig into plant metabolite-protein interactions. Trends Plant Sci. 26, 472-483 [80] Verma, S.S., Yajima, W.R., Rahman, M.H., et al., 2012. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol. Biol. 79, 61-74 [81] Vlot, A.C., Sales, J.H., Lenk, M., et al., 2020. Systemic Propagation of Immunity in Plants. New Phytologist [82] Wang, R., He, F., Ning, Y., et al., 2020. Fine-tuning of RBOH-mediated ROS signaling in plant immunity. Trends Plant Sci. 25, 1060-1062 [83] Wei, W., Yang, M., Liu, Y., et al., 2018. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Sci. Total Environ. 633, 796-807 [84] Wu, Hongmiao, Xia, J., Qin, X., et al., 2020. Underlying mechanism of wild radix pseudostellariae in tolerance to disease under the natural forest cover. Front. Microbiol. 11 [85] Yan, Z.Y., 2012. Major tasks and challenges for resources science of Chinese medicinal materials. Pharmacy & Clinics of Chinese Materia Medica [86] Yang, H., 2016. Main Practice and Effects of Chinese Herbal Medicine Planting under Forest Development in Xiji County. Modern Agricultural Science & Technology [87] Yang, T., Chen, Y.J., Duan, C.L., et al., 2006. The methodology for artificial identification of panax notoginseng resistance to black spot disease. J. Yunnan Agric. Univ. 21, 549-548 [88] Yang, M., Zhang, Y., Qi, L., et al., 2014. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. PLoS One 9, e115052 [89] Yang, M., Zhang, X., Xu, Y., et al., 2015. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS One 10, e0118555 [90] Yang, Z., Liu, G., Zhang, G., et al., 2021. The chromosome-scale high quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis. Plant biotechnology journal 19 [91] Ye, C., Y. Fang, H, J. Liu, H., et al., 2019. Current status of soil sickness research on Panax notoginseng in Yunnan, China. Allelopathy J. 47, 1-14 [92] Ye, C., Liu, Y., Zhang, J., et al., 2021. α-Terpineol fumigation alleviates negative plant-soil feedbacks of Panax notoginseng via suppressing Ascomycota and enriching antagonistic bacteria. Phytopathology Research 3 [93] Yu, G., Wang, L.G., Han, Y., et al., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. Omics 16, 284-287 [94] Yu, X., Feng, B., He, P., et al., 2017. From chaos to harmony:responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55, 109-137 [95] Zeng, W., Jia, L., 2009. Antimicrobial activities of pine needle extracts. Food Sci. (N. Y.) 30, 87-90 [96] Zhang, S., Klessig, D.F., 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520-527 [97] Zhang, X., Yang, T., Lin, Q., et al., 2011a. Isolation and identification of an acetoin high production bacterium that can reverse transform 2,3-butanediol to acetoin at the decline phase of fermentation. World J. Microbiol. Biotechnol. 27, 2785-2790 [98] Zhang, Y., Sun, H., Song, X., et al., 2011b. Studied on soil microbial community structure about wild ginseng under forest. Res. Soil Water Conserv. 18, 169-173 [99] Zhang, X., Zhu, Z., An, F., et al., 2014. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26, 1105-1117 [100] Zhang, S., Chen, C., Lu, W., et al., 2018. Phytochemistry, pharmacology, and clinical use of Panax notoginseng flowers buds:active Components and Uses of Panax notoginseng Flowers. Phytother Res. 32 [101] Zhong, L.L., Yang, W., Lam, W.C., et al., 2020. Potential targets for treatment of coronavirus disease 2019 (COVID-19):a review of qing-fei-pai-du-tang and its major herbs. Am. J. Chin. Med. 48 [102] Zhou, P., Xie, W., He, S., et al., 2019. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 8, 204 [103] Zhu, S., Morel, J.B., 2019. Molecular mechanisms underlying microbial disease control in intercropping. Mol. Plant Microbe Interact. 32, 20-24 |