[1] Adal, A.M., Sarker, L.S., Lemke, A.D., et al., 2017. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. Plant Mol. Biol. 93, 641-657. [2] Ashburner, M., Ball, C.A., Blake, J.A., et al., 2000. Gene ontology:tool for the unification of biology. Nat. Genet. 25, 25-29. [3] Bao, Z., Eddy, S.R., 2002. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269-1276. [4] Berckmans, B., Vassileva, V., Schmid, S.P., et al., 2011. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23, 3671-3683. [5] Birney, E., Clamp, M., Durbin, R., 2004. GeneWise and genomewise. Genome Res. 14, 988-995. [6] Bo, X., Yu, K., 2021. Study on extraction and chemical constituents of volatile oil from the leaves of Pterocarya stenoptera C. DC. Hubei Agr. Sci. 60, 119-123. [7] Boeckmann, B., Bairoch, A., Apweiler, R., et al., 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365-370. [8] Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59-60. [9] Burton, J.N., Adey, A., Patwardhan, R.P., et al., 2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119-1125. [10] Chen, N.G., Wang, P.R., Li, C.M., et al., 2018. A Single nucleotide mutation of the gene participating in the MEP pathway forisoprenoid biosynthesis causes a green-revertible yellow leaf phenotype in rice. Plant Cell Physiol. 59, 1905-1917. [11] Cheng, H., Concepcion, G.T., Feng, X., et al., 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18,170-175. [12] Cheng, T., Zhang, K., Guo, J., et al., 2022. Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco. Biotechnol. Biof. Biop. 15, 39. [13] Chohan, T.A., Chohan, T.A., Mumtaz, M.Z., et al., 2023. Insecticidal potential of α-pinene and β-caryophyllene against Myzus persicae and their impacts on gene expression. Phyton-Int. J. Exp. Bot. 92, 1943-1954. [14] Dang, J.J., Lin, G.Y., Liu, L.C., et al., 2022. Comparison of pulegone and estragole chemotypes provides new insight into volatile oil biosynthesis of Agastache rugosa. Front. Plant Sci. 13, 850130. [15] Deng, Y.Y., Li, J.Q., Wu, S.F., et al., 2006. Integrated NR database in protein annotation system and its localization. Comp. Eng. 32, 71-74. [16] Ding, Y.M., Pang, X.X., Cao, Y., et al., 2023. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat. Commun. 14, 617. [17] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. bull. 19, 11-15. [18] Ellinghaus, D., Kurtz, S., Willhoeft, U., 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18. [19] Emms, D.M., Kelly, S., 2019. OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. [20] Finn, R.D., Mistry, J., Schuster-Bockler, B., et al., 2006. Pfam:clans, web tools and services. Nucleic Acids Res. 34, D247-D251. [21] Flynn, J.M., Hubley, R., Goubert, C., et al., 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U.S.A. 117, 9451-9457. [22] Gao, F.Z., Liu, B.F., Li, M., et al., 2018. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. J. Exp. Bot. 69, 4249-4265. [23] Gao, N., 2009. Study on Pllutant in the Water Removal Efficiency of Several Trees Commonly Used in Urban. Beijing:Beijing Forestry University,(Master thesis). [24] Griffiths-Jones, S., Moxon, S., Marshall, M., et al., 2005. Rfam:annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121-D124. [25] Haas, B.J., Delcher, A.L., Mount, S.M., et al., 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654-5666. [26] Haas, B.J., Salzberg, S.L., Zhu, W., et al., 2008. Automated eukaryotic gene structure annotation using EVidence Modeler and the Program to Assemble spliced alignments. Genome Biol. 9, R7. [27] Han, M.V., Thomas, G.W.C., Lugo-Martinez, J., et al., 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987-1997. [28] Huerta-Cepas, J., Szklarczyk, D., Heller, D., et al., 2019. eggNOG 5.0:a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309-D314. [29] Jethva, J., Lichtenauer, S., Schmidt-Schippers, R., et al., 2023. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. New Phytol. 238, 96-112. [30] Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. [31] Kanehisa, M., Sato, Y., Kawashima, M., et al., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457-D462. [32] Katoh, K., Asimenos, G., Toh, H., 2009. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537, 39-64. [33] Keilwagen, J., Wenk, M., Erickson, J.L., et al., 2016. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89. [34] Kim, D., Landmead, B., Salzberg, S.L. 2015. HISAT:a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360. [35] Kind, T., Wohlgemuth, G., Lee, D.Y., et al., 2009. FiehnLib:mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038-10048. [36] Korf, I., 2004. Gene finding in novel genomes. BMC Bioinf. 5, 59. [37] Kuang, K.R., Li, P.Q., 1979. Flora of China (Volume 21). Beijing:Science Press, pp. 21-30. [38] Kumar, S., Stecher, G., Suleski, M., et al., 2017, Timetree:a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812-1819. [39] Kumbasli, M., Bauce, E., 2013. Spruce budworm biological and nutritional performance responses to varying levels of monoterpenes. iForest-Biogeosci. Fores. 6, 117. [40] Langfelder, P., Horvath, S., 2008. WGCNA:an R package for weighted correlation network analysis. BMC Bioinf. 9, 559. [41] Li, C.X., Wei, H., Lv, Q., Zhang, Y., 2010. Effects of water stresses on growth and contents of oxalate and tartarate in the roots of Chinese wingnut (Pterocarya stenoptera) seedlings. Sci. Silvae Sin. 46, 81-88. [42] Li, D.X., Cui, C.B., Cai, B., et al., 2007. Research progress of Pterocarya. Pharm. J. Chinese P. L. A. 23, 365-369. [43] Li, H., 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572-4574. [44] Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. [45] Li, H., Durbin, R., 2011. Inference of human population history from individual whole-genome sequences. Nature 475, 493-496. [46] Li, X.R., Zhang, X.X., Xing, M.Y., et al., 2021. Antioxidant and antibacterial activities of Pterocarya stenoptera bark extract and its mechanism on Staphylococcus aureus through cell membrane damage. Bioresources 16, 3771-3782. [47] Li, J.X., Zhu, X.H., Li, Y., et al., 2018. Adaptive genetic differentiation in Pterocarya stenoptera(Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biol. 18, 306. [48] Li, L.F., Cushman, S.A., He, Y.X., et al., 2022. Landscape genomics reveals genetic evidence of local adaptation in a widespread tree, the Chinese wingnut (Pterocarya stenoptera). J. Systemat. Evol. 60, 386-397. [49] Li, Y., Shi, L.C., Yang, J., et al., 2021. Physiological and transcriptional changes provide insights into the effect of root waterlogging on the aboveground part of Pterocarya stenoptera. Genomics 113, 2583-2590. [50] Li, Y., Si, Y.T., He, Y.X., et al., 2021. Comparative analysis of drought-responsive and-adaptive genes in Chinese wingnut (Pterocarya stenoptera C. DC). BMC Genom. 22, 155. [51] Li, Y., Wang, F., Pei, N.C., et al., 2023. The updated weeping forsythia genome reveals the genomic basis for the evolution and the forsythin and forsythoside A biosynthesis. Hortic.Plant J. 9, 1149-1161. [52] Liu, Y., Schroder, J., Schmidt, B., 2013. Musket:a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29, 308-315. [53] Liu, Z.K., Fu, Y.H., Wang, H., et al., 2023. The high-quality sequencing of the Brassica rapa'XiangQingCai'genome and exploration of genome evolution and genes related to volatile aroma. Hortic. Res. 10, uhad187. [54] Loman, T., 2017. A novel method for predicting ribosomal RNA genes in prokaryotic genomes. Degree Projects in Bioinformatics. http://lup.lub.lu.se/student-papers/record/8914064. [55] Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. [56] Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. [57] Mi, H., Muruganujan, A., Ebert, D., et al., 2019. PANTHER version 14:more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419-D426. [58] Nanjing University of Traditional Chinese Medicine, 1997. Dictionary of Traditional Chinese Medicine. Shanghai:Shanghai Science& Technology Press. [59] Nawrocki, E.P., Eddy, S.R., 2013. Infernal 1.1:100-fold faster RNA homology searches. Bioinformatics 29, 2933-2935. [60] Niu, F.X., He, X., Wu, Y.Q., et al., 2018. Enhancing Production of Pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Front. Microbiol. 9, 1623. [61] Ou, S., Jiang, N., 2018. LTR_retriever:a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410-1422. [62] Pan Y. 2021. Propagation and cultivation techniques for ginkgo and Pterocarya stenoptera trees in Changji prefecture. Forest. Xinjiang 1, 22-24. [63] Parra, G., Bradnam, K., Korf, I., 2007. CEGMA:a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067. [64] Pertea, M., Pertea, G.M., Antonescu, C.M., et al., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295. [65] Price, A.L., Jones, N.C., Pevzner, P.A., 2005. De novo identification of repeat families in large genomes. Bioinformatics 21, i351-i358. [66] Qian, Z.H., Li, Y., Li, M.W., et al., 2019. Molecular phylogeography analysis reveals population dynamics and genetic divergence of a widespread tree Pterocarya stenoptera in China. Front. Genet. 10, 1089. [67] Rai, N., Kumari, S., Singh, S., et al., 2024. Modulation of morpho-physiological attributes and in situ analysis of secondary metabolites using Raman spectroscopy in response to red and blue light exposure in Artemisia annua. Environ. Exp. Bot. 217, 105563. [68] Richter, A., Seidl-Adams, I., Kollner, T.G., et al., 2015. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta 241, 1351-1361. [69] Shannon, P., Markiel, A., Ozier, O., et al., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. [70] Shao, Y., 2016. Study on Juglandaceae Fossils from the Late Miocene of Lincang, Yunnan Province, China. Lanzhou:Lanzhou University,(Master's thesis). [71] She, R., Chu, J.S., Wang, K., et al., 2009. GenBlastA:enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143-149. [72] Simao, F.A., Waterhouse, R.M., Ioannidis, P., et al., 2015. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212. [73] Sollars, E.S., Harper, A.L., Kelly, L.J., et al., 2017. Genome sequence and genetic diversity of European ash trees. Nature 541, 212-216. [74] Stanke, M., Diekhans, M., Baertsch, R., et al., 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637-644. [75] Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612. [76] Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [77] Tang, H., Krishnakumar, V., Li, J., et al., 2015. Jcvi:JCVI Utility Libraries. Zenodo. [78] Tang, S., Lomsadze, A., Borodovsky, M., 2015. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78. [79] Tarailo-Graovac, M., Chen, N., 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1-4:4.10.14. [80] Tatusov, R.L., Fedorova, N.D., Jackson, J.D., et al., 2003. The COG database:an updated version includes eukaryotes. BMC Bioinf. 4, 41. [81] Tommasini, D., Fogel, B.L. 2023. multiWGCNA:an R package for deep mining gene co-expression networks in multi-trait expression data. BMC Bioinf. 24, 115. [82] Tripathi, A.K., Prajapati, V., Khanuja, S.P.S., et al., 2003. Effect of d-limonene on three stored-product beetles. J. Econ. Entomol. 96, 990-995. [83] Wang, W., Shao, A., Xu, X., et al., 2022. Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC Plant Biol. 22, 355. [84] Wang, Y., Tang, H., Debarry, J.D., et al., 2012. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49. [85] Wickham, H. 2009. Ggplot2:Elegant Graphics for Data Analysis, second ed. New York:Springer. [86] Winter, G., Todd, C.D., Trovato, M., et al., 2015. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 6, 534. [87] Xie, S., Wu, G., Ren, R.H., et al., 2023. Transcriptomic and metabolic analyses reveal differences in monoterpene profiles and the underlying molecular mechanisms in six grape varieties with different flavors. LWT--Food Sci. Technol. 174, 114442. [88] Xie, S.P., Manchester, S.R., Liu, K.N., et al., 2013. Sp N., A leaf fossil of Rutaceae from the late Miocene of Yunnan, China. Int. J. Plant Sci. 174, 1201-1207. [89] Xu, Y.M., Zhou, M.H., Shi, Y.H., et al., 2002. Advance on the biological properties and resources utilization of Pterocarya stenoptera. J. Northeast For. Univ. 30, 42-48. [90] Xu, Z., Wang, H., 2007. LTR_FINDER:an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265-W268. [91] Yang, Z. 1997. PAML:a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555-556. [92] Ye, X.F., Li, Y., Liu, H.L., et al., 2020. Physiological analysis and transcriptome sequencing reveal the effects of drier air humidity stress on Pterocarya stenoptera. Genomics 112, 5005-5011. [93] Yin, C., Sun, F., Rao, Q., et al., 2020. Chemical compositions and antimicrobial activities of the essential oil from Pterocarya stenoptera C. DC. Nat. Prod. Res. 34, 2828-2831. [94] Yu, G.C., Wang, L.G., Han, Y.Y., et al., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. [95] Zhang, W., Wang, S.C. Li, Y., 2023. Molecular mechanism of thiamine in mitigating drought stress in Chinese wingnut (Pterocarya stenoptera):insights from transcriptomics. Ecotoxicol. Environ. Saf. 263, 115307. [96] Zhu, C.Y., Peng, C., Qiu, D.Y., et al., 2022. Metabolic profiling and transcriptional analysis of carotenoid accumulation in a red-fleshed mutant of pummelo (Citrus grandis). Molecules 27, 4595. [97] Zwaenepoel, A., Van de Peer, Y., 2019. WGD-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153-2155. |