Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 344-352.DOI: 10.1016/j.pld.2023.06.001
• Articles • Previous Articles
Xiang-Zhou Hua,b, Cen Guoa, Sheng-Yuan Qina,b, De-Zhu Lia,b, Zhen-Hua Guoa,b
Received:
2023-02-07
Revised:
2023-05-24
Published:
2024-05-20
Contact:
Xiang-Zhou Hu,E-mail:huxiangzhou@mail.kib.ac.cn;Cen Guo,E-mail:guocen@mail.kib.ac.cn;Sheng-Yuan Qin,E-mail:qinshengyuan@mail.kib.ac.cn;De-Zhu Li,E-mail:DZL@mail.kib.ac.cn;Zhen-Hua Guo,E-mail:guozhenhua@mail.kib.ac.cn
Supported by:
Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae)[J]. Plant Diversity, 2024, 46(03): 344-352.
Add to citation manager EndNote|Ris|BibTeX
[1] Abbott, R.J., 2003. Sex, sunflowers, and speciation. Science 301, 1189-1190. [2] Berger, B.A., Han, J., Sessa, E.B., et al., 2017. The unexpected depths of genome-skimming data:a case study examining Goodeniaceae floral symmetry genes. Appl. Plant Sci. 5, 1700042. [3] Birky, C.W., 1995. Uniparental inheritance of mitochondrial and chloroplast genes:mechanisms and evolution. Proc. Natl. Acad. Sci. U.S.A. 92, 11331-11338. [4] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [5] Cai, L.M., Xi, Z.X., Lemmon, E.M., et al., 2021. The perfect storm:gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Syst. Biol. 70, 491-507. [6] Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., 2009. TrimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973. [7] Debray, K., Le Paslier, M.C., Berard, A., et al., 2022. Unveiling the patterns of reticulated evolutionary processes with phylogenomics:hybridization and polyploidy in the genus Rosa. Syst. Biol. 71, 547-569. [8] Dong, W.P., Li, E.Z., Liu, Y.L., et al., 2022. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol. 20, 92. [9] Doolittle, W.F., 1999. Phylogenetic classification and the universal tree. Science 284, 2124-2128. [10] Gross, B.L., Rieseberg, L.H., 2005. The ecological genetics of homoploid hybrid speciation. J. Hered. 96, 241-252. [11] Guo, C., Guo, Z.H., Li, D.Z., 2019b. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae:Bambusoideae). Plant Divers. 41, 213-219. [12] Guo, C., Ma, P.F., Yang, G.Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. [13] Guo, C., Luo, Y., Gao, L.M., et al., 2023. Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65, 299-323. [14] Guo, Z.H., Ma, P.F., Yang, G.Q., et al., 2019a. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 12, 1353-1365. [15] Hu, Y.N., Zhao, L., Buggs, R.J.A., et al., 2019. Population structure of Betula albosinensis and Betula platyphylla:evidence for hybridization and a cryptic lineage. Ann. Bot. 123, 1179-1189. [16] Janzen, D.H., 1976. Why bamboos wait so long to flower. Annu. Rev. Ecol. Systemat. 7, 347-391. [17] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [18] Johnson, M.G., Gardner, E.M., Liu, Y., et al., 2016. HybPiper:extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4, 1600016. [19] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [20] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [21] Linder, C.R., Rieseberg, L.H., 2004. Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91, 1700-1708. [22] Liu, B.B., Ma, Z.Y., Ren, C., et al., 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics:a case study in Vitaceae. J. Systemat. Evol. 5, 1124-1138. [23] Liu, J.X., Zhou, M.Y., Yang, G.Q., et al., 2020. ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae:Bambusoideae). Mol. Phylogenet. Evol. 146, 106758. [24] Liu, L.X., Deng, P., Chen, M.Z., et al., 2023. Systematics of Mukdenia and Oresitrophe(Saxifragaceae):insights from genome skimming data. J. Systemat. Evol. 61, 99-114. [25] Low, L.W., Rajaraman, S., Tomlin, C.M., et al., 2022. Genomic insights into rapid speciation within the world's largest tree genus Syzygium. Nat. Commun. 13, 5031. [26] Lv, S.Y., Ye, X.Y., Li, Z.H., et al., 2023. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia. Plant Divers. 45, 147-155. [27] Ma, J.X., Sun, P.C., Wang, D.D., et al., 2021. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat. Commun. 12, 6929. [28] Ma, P.F., Liu, Y.L., Guo, C., et al., 2023. Subgenome Dominance Included Diversification in the World's Largest Grasses.(submitted for publication). [29] Mallet, J., Besansky, N., Hahn, M.W., 2016. How reticulated are species?Bioessays 38, 140-149. [30] McKenna, A., Hanna, M., Banks, E., et al., 2010. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303. [31] Morales-Briones, D.F., Kadereit, G., Tefarikis, D.T., et al., 2021. Disentangling sources of gene tree discordance in phylogenomic data sets:testing ancient hybridization in Amaranthaceae s.l. Syst. Biol. 70, 219-235. [32] Nguyen, L.T., Schmidt, H.A., Haeseler, A.V., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [33] Nitta, J.H.; Ebihara, A., Ito, M., 2011. Reticulate evolution in the Crepidomanes minutum species complex (Hymenophyllaceae). Am. J. Bot. 98, 1782-1800. [34] Parisod, C., Badaeva, E.D., 2020. Chromosome restructuring among hybridizing wild wheats. New Phytol. 226, 1263-1273. [35] Pease, J.B., Brown, J.W., Walker, J.F., et al., 2018. Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. Am. J. Bot. 105, 385-403. [36] Pennisi, E., 2016. Shaking up the tree of life. Science 354, 817-821. [37] Pickrell, J.K., Pritchard, J.K., 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967. [38] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA:a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. [39] Ramsey, J., Schemske, D.W., 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Systemat. 33, 589-639. [40] Rieseberg, L.H., Soltis, D.E., 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plants 5, 65-84. [41] Smith, S.A., Moore, M.J., Brown, J.W., et al., 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150. [42] Solís-Lemus, C., Bastide, P., Ané, C., 2017. Phylonetworks:a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292-3298. [43] Soltis, P.S., Soltis, D.E., 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561-588. [44] Soreng, R.J., Peterson, P.M., Fernando, O.Z., et al., 2022. A worldwide phylogenetic classification of the Poaceae (Gramineae) III:an update. J. Systemat. Evol. 60, 476-521. [45] Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. [46] Stewart, N.C., Halfhill, M.D., Warwick, S.I., 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4, 806-817. [47] Stull, G.W., Pham, K.K., Soltis, P.S., et al., 2023. Deep reticulation:the long legacy of hybridization in vascular plant evolution. Plant J. doi:https://doi.org/10.1111/tpj.16142. [48] Triplett, J.K., 2008. Phyloenetic Relationships Among the Temperate Bamboos (Poaceae:Bambusoideae) with an Emphasis on Arundinaria and Allies. Lowa, United States:Lowa State University. [49] Triplett, J.K., Clark, L.G., 2010. Phylogeny of the temperate bamboos (Poaceae:Bambusoideae:Bambuseae) with an emphasis on Arundinaria and allies. Syst. Bot. 35, 102-120. [50] Triplett, J.K., Clark, L.G., 2021. Hybridization in the temperate bamboos (Poaceae:Bambusoideae:Arundinarieae):a phylogenetic study using AFLPs and cpDNA sequence data. Syst. Bot. 46, 48-69. [51] Triplett, J.K., Clark, L.G., Fisher, L.G., et al., 2014. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol. 204, 66-73. [52] Vargas, O.M., Heuertz, M., Smith, S.A., et al., 2019. Target sequence capture in the Brazil nut family (Lecythidaceae):marker selection and in silico capture from genome skimming data. Mol. Phylogenet. Evol. 135, 98-104. [53] Walker, J.F., Walker-Hale, N., Vargas, O.M., et al., 2019. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 7, e7747. [54] Wang, H.X., Morales-Briones, D.F., Moore, M.J., et al., 2021a. A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. J. Systemat. Evol. 59, 897-914. [55] Wang, X.T., Chen, L.Y., Ma, J.X., 2019. Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biol. 20, 22-36. [56] Wang, Z.F., Jiang, Y.Z., Bi, H., et al., 2021b. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208-222. [57] Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [58] Yang, F.M., Ge, J., Guo, Y.J., et al., 2023. Deciphering complex reticulate evolution of Asian Buddleja(Scrophulariaceae):insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. Ann. Bot. doi:https://doi.org/10.1093/aob/mcad022. [59] Yang, H.M., Zhang, Y.X., Yang, J.B., et al., 2013. The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae:Bambusoideae) inferred from four plastid and two nuclear markers. Mol. Phylogenet. Evol. 68, 340-356. [60] Ye, X.Y., Ma, P.F., Guo, C., et al., 2021. Phylogenomics of Fargesia and Yushania reveals a history of reticulate evolution. J. Systemat. Evol. 59, 1183-1197. [61] Yu, J.R., Niu, Y.T., You, Y.C., et al., 2023. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus(Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. New Phytol. 238, 888-903. [62] Zhang, C., Rabiee, M., Sayyari, E., et al., 2018. ASTRAL-III:polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19, 153. [63] Zhang, N., Wen, J., Zimmer, E.A., 2015. Congruent deep relationships in the grape family (Vitaceae) based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. PLoS One 10, e0144701. [64] Zhang, X.T., Chen, S., Shi, L.Q., et al., 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 53, 1250-1259. [65] Zhang, Y.X., Zeng, C.X., Li, D.Z., 2012. Complex evolution in Arundinarieae (Poaceae:Bambusoideae):incongruence between plastid and nuclear GBSSI gene phylogenies. Mol. Phylogenet. Evol. 63, 777-797. [66] Zhao, X.B., Fu, X.D., Yin, C.B., et al., 2021. Wheat speciation and adaptation:perspectives from reticulate evolution. aBIOTECH 2, 386-402. [67] Zou, T.T., Kuang, W.M., Yin, T.T., et al., 2022. Uncovering the enigmatic evolution of bears in greater depth:the hybrid origin of the Asiatic black bear. Proc. Natl. Acad. Sci. U.S.A. 119, e2120307119. |
[1] | Yumeng Ren, Lushui Zhang, Xuchen Yang, Hao Lin, Yupeng Sang, Landi Feng, Jianquan Liu, Minghui Kang. Cryptic divergences and repeated hybridizations within the endangered “living fossil” dove tree (Davidia involucrata) revealed by whole genome resequencing [J]. Plant Diversity, 2024, 46(02): 169-180. |
[2] | Jian-Feng Huang, Clive T. Darwell, Yan-Qiong Peng. Enhanced and asymmetric signatures of hybridization at climatic margins: Evidence from closely related dioecious fig species [J]. Plant Diversity, 2024, 46(02): 181-193. |
[3] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses [J]. Plant Diversity, 2023, 45(04): 397-408. |
[4] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
[5] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes [J]. Plant Diversity, 2023, 45(02): 125-132. |
[6] | Da-Lv Zhong, Yuan-Cong Li, Jian-Qiang Zhang. Allopolyploid origin and niche expansion of Rhodiola integrifolia (Crassulaceae) [J]. Plant Diversity, 2023, 45(01): 36-44. |
[7] | Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang. Recent advances on phylogenomics of gymnosperms and a new classification [J]. Plant Diversity, 2022, 44(04): 340-350. |
[8] | Juan Chen, Sijin Zeng, Linya Zeng, Khang Sinh Nguyen, Jiawei Yan, Hua Liu, Nianhe Xia. Parahellenia, a new genus segregated from Hellenia (Costaceae) based on phylogenetic and morphological evidence [J]. Plant Diversity, 2022, 44(04): 389-405. |
[9] | Zeng-Qiang Xia, Zuo-Ying Wei, Hui Shen, Jiang-Ping Shu, Ting Wang, Yu-Feng Gu, Amit Jaisi, Yue-Hong Yan. Lycophyte transcriptomes reveal two whole-genome duplications in Lycopodiaceae: Insights into the polyploidization of Phlegmariurus [J]. Plant Diversity, 2022, 44(03): 262-270. |
[10] | Feng-Wei Lei, Ling Tong, Yi-Xuan Zhu, Xian-Yun Mu, Tie-Yao Tu, Jun Wen. Plastid phylogenomics and biogeography of the medicinal plant lineage Hyoscyameae (Solanaceae) [J]. Plant Diversity, 2021, 43(03): 192-197. |
[11] | Mianmian Wang, Jun Yang, Jinpeng Wan, Dayun Tao, Jiawu Zhou, Diqiu Yu, Peng Xu. A hybrid sterile locus leads to the linkage drag of interspecific hybrid progenies [J]. Plant Diversity, 2020, 42(05): 370-375. |
[12] | Xin-Yu Du, Jin-Mei Lu, De-Zhu Li. Extreme plastid RNA editing may confound phylogenetic reconstruction: A case study of Selaginella (lycophytes) [J]. Plant Diversity, 2020, 42(05): 356-361. |
[13] | Changkun Liu, Zhenyan Yang, Lifang Yang, Junbo Yang, Yunheng Ji. The complete plastome of Panax stipuleanatus: Comparative and phylogenetic analyses of the genus Panax (Araliaceae) [J]. Plant Diversity, 2018, 40(06): 265-276. |
[14] | Xiangqin Yu, Dan Yang, Cen Guo, Lianming Gao. Plant phylogenomics based on genome-partitioning strategies: Progress and prospects [J]. Plant Diversity, 2018, 40(04): 158-164. |
[15] | Huan-Lei Zhang, Jian-Jun Jin, Michael J. Moore, Ting-Shuang Yi, De-Zhu Li. Plastome characteristics of Cannabaceae [J]. Plant Diversity, 2018, 40(03): 127-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||