Plant Diversity ›› 2025, Vol. 47 ›› Issue (01): 1-12.DOI: 10.1016/j.pld.2024.07.004
• Articles •
Jiagang Zhaoa,b, Shufeng Lia, Jian Huanga, Wenna Dinga,c, Mengxiao Wua,d, Tao Sua,e, Alexander Farnsworthf,g, Paul J. Valdesf, Linlin Chenf, Yaowu Xinga, Zhekun Zhoua
Received:
2024-04-22
Revised:
2024-07-03
Published:
2025-02-15
Contact:
Yaowu Xing,E-mail:ywxing@xtbg.org.cn;Zhekun Zhou,E-mail:zhouzk@xtbg.ac.cn
Supported by:
Jiagang Zhao, Shufeng Li, Jian Huang, Wenna Ding, Mengxiao Wu, Tao Su, Alexander Farnsworth, Paul J. Valdes, Linlin Chen, Yaowu Xing, Zhekun Zhou. Heterogeneous occurrence of evergreen broad-leaved forests in East Asia: Evidence from plant fossils[J]. Plant Diversity, 2025, 47(01): 1-12.
Add to citation manager EndNote|Ris|BibTeX
Aleksandrova, G.N., Kodrul, T.M., Jin, J.H., 2015. Palynological and paleobotanical investigations of Paleogene sections in the Maoming basin, South China. Stratigr. Geol. Correl. 23, 300-325. Averianov, A., Obraztsova, E., Danilov, I., et al., 2017. Anthracotheriid artiodactyl anthracokeryx and an upper Eocene age for the youganwo formation of southern China. Hist. Biol.31,1115-1122. Azuma, H., Garcia- Franco, J.G., Rico-Grey, V., et al., 2001. Molecular phylogeny of the Magnoliaceae: the biogeography of tropical and temperate disjunctions. Am. J. Bot. 88, 2275-2285. Azuma, H., Garcia- Franco, J.G., Rico-Grey, V., et al., 2001. Molecular phylogeny of the Magnoliaceae: the biogeography of tropical and temperate disjunctions. Am. J. Bot. 88, 2275-2285. Azuma, H., Garcia- Franco, J.G., Rico-Grey, V., et al., 2001. Molecular phylogeny of the Magnoliaceae: the biogeography of tropical and temperate disjunctions. Am. J. Bot. 88, 2275-2285. Chen, X.H., Xiang, K.L., Lian, L., et al., 2020. Biogeographic diversification of Mahonia (Berberidaceae): implications for the origin and evolution of East Asian subtropical evergreen broadleaved forests. Mol. Phylogenet. Evol. 151, 106910. Chen, Y.S., Deng, T., Zhou, Z., et al., 2018. Is the East Asian flora ancient or not? Natl. Sci. Rev. 5, 920-932. Cox, P. M., 2001. Description of the TRIFFID Dynamic Global Vegetation Model, Tech rep, Met Office Hadley Centre, Exeter, UK. Deng, M., Jiang, X.L., Hipp, A.L., et al., 2018. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol. Phylogenet. Evol. 119, 170-181. Deng, W.Y.D., Su, T., Wappler, T., et al., 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene-Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global Planet. Change 194, 103293. Dong, S. S., Wang, Y. L., Xia, N. H., et al., 2021. Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l. (Magnoliaceae). J. Systemat. Evol. 60, 1-15. Fang, J.Y., Guo, Z.D., Hu, H.F., et al., 2014. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biol. 20, 2019-2030. Fang, X.M., Yan, M.D., Zhang, W.L, et al., 2021. Paleogeography control of Indian monsoon intensification and expansion at 41 Ma. Sci. Bull. 66, 2320-2328. Farnsworth, A., Lunt, D. J., Robinson, S. A., et al., 2019. Past East Asian monsoon evolution controlled by paleogeography, not C2. Sci. Adv.5, eaax1697. Fenton, I. S., Aze, T., Farnsworth, A., et al., 2023. Origination of the modern-style diversity gradient 15 million years ago. Nature 614, 708-712. Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845. Gourbet, L., Leloup, P.H., Paquette, J.L., et al., 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700-701, 162-179. Guo, Z.T., Sun, B., Zhang, Z.S., et a1., 2008. A major reorganization of Asian climate by the early Miocene. Clim. Past 4, 153-174.. Hai, L., Li, X.Q., Zhang, J.B., et al., 2022. Assembly dynamics of East Asian subtropical evergreen broadleaved forests: new insights from the dominant Fagaceae trees. J. Integr. Plant Biol. 64, 2126-2134. Herman, A.B., Spicer, R.A., Aleksandrova, G.N., et al., 2017. Eocene-early Oligocene climate and vegetation change in southern China: evidence from the Maoming Basin. Paleogeogr. Paleoclimatol. Paleoecol. 479, 126-137. Hipp, A.L., Manos, P.S., Hahn, M., et al., 2020. Genomic landscape of the global oak phylogeny. New Phytol. 226, 1198-1212. Hu, H.H., Chaney, R.W., 1940. Miocene Flora from Shantung Province, China. Carnegie Institution of Washington Publication, Washington D.C. Huang, J., 2017. The Middle Miocene Wenshan Flora, Yunnan, Southwestern China and its Palaeoenvironment Reconstruction. PhD Thesis. Xishuangbannna Tropical Botanical Garden, Chinese Academy of Sciences. Huang, J., Shi, G.L., Su, T., et al., 2017. Miocene exbucklandia (Hamamelidaceae) from Yunnan, China and its biogeographic and palaeoecologic implications. Rev. Palaeobot. Palynol. 244, 96-106. Huang, J., Su, T., Jia, L.B., et al., 2018. A fossil fig from the Miocene of southwestern China: indication of persistent deep time karst vegetation. Rev. Palaeobot. Palynol. 258, 133-145. Huang, J., Su, T., Lebereton-Anberree, J., et al., 2016b. The oldest Mahonia (Berberidaceae) fossil from East Asia and its biogeographic implications. J. Plant Res. 129, 209-223. Huang, J.F., Li, L., van der Werff, H., et al., 2016a. Origins and evolution of cinnamon and camphor: a phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol. Phylogenet. Evol. 96, 33-44. Huang, L.L., Jin, J.H., Quan, C., et al., 2021. New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications. J. Palaegeogr. 10, 482-493. Huang, Y. J., Jia, L.B., Su, T., et al., 2020. A warm-temperate forest of mixed coniferous type from the upper Pliocene Sanying Formation (southeastern edge of Tibetan Plateau) and its implications for palaeoecology and palaeoaltimetry. Paleogeogr. Paleoclimatol. Paleoecol. 538, 109486. Huang, Y.J., Jacques, F.M.B., Liu, Y.S., et al., 2012. New fossil endocarps of Sambucus (Adoxaceae) from the upper Pliocene in SW China. Rev. Palaeobot. Palynol. 171, 152-163. Huang, Y.J., Jacques, F.M.B., Liu, Y.S., et al., 2015. Rubus (Rosaceae) diversity in the late Pliocene of Yunnan, southwestern China. Geobios 48, 439-448. Huang, Y.J., Liu, Y.S., Jacques, F.M.B., et al., 2013. First discovery of Cucubalus (Caryophyllaceae) fossil, and its biogeographical and ecological implications. Rev. Palaeobot. Palynol. 190, 41-47. Huzioka, K., Takahasi, E., 1970. The Eocene flora of the Ube coal-field, southwest Honshu, Japan. J. Min. Coll. Akita Univ.-Ser. A Min. Geol. 4, 1-88. Jin, J.H., Herman, A.B., Spicer, R.A., et al., 2017. Palaeoclimate background of the diverse Eocene floras of South China. Sci. Bull. 62, 1501-1503. Karger, D.N., Conrad, O., Bohner, J., et al., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 1-20. Kunzmann, L., Li, S.F., Huang, J., et al., 2022. Assessment of phytogeographic reference regions for Cenozoic vegetation: a case study on the Miocene flora of Wiesa (Germany). Fossil Imprint 78, 1-43. Azuma, H., Garcia- Franco, J.G., Rico-Grey, V., et al., 2001. Molecular phylogeny of the Magnoliaceae: the biogeography of tropical and temperate disjunctions. Am. J. Bot. 88, 2275-2285. Li, L., Li, J., Rohwer, J. G., et al., 2011. Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical Amphi-Pacific disjunctions. Am. J. Bot. 98, 1520-1536. Li, Q.J., Utescher, T., Liu, Y.C., et al., 2022. Monsoonal climate of East Asia in Eocene times inferred from an analysis of plant functional types. Paleogeogr. Paleoclimatol. Paleoecol. 601, 111138. Li, S.F., Mao, L.M., Spicer, R.A., et al., 2015. Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Paleogeogr. Paleoclimatol. Paleoecol. 425, 14-40. Li, S.F., Valdes, P.J., Farnsworth, A., et al., 2021a. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741. Li, Y.F., Huang, L.L., Quan, C., Jin, J.H., 2021b. Fossil wood of Syzygium from the Miocene of Guangxi, South China: the earliest fossil evidence of the genus in eastern Asia. IAWA J. 42, 435-441. Licht, A., Van Cappelle, M., Abels, H.A., et al., 2014. Asian monsoons in a late Eocene greenhouse world. Nature 513, 501-506. Lin, X.B., Wyrwoll, K. H., Chen, H.L., et al., 2015. An active east Asian monsoon at the Oligocene-Miocene boundary: evidence from the Sikouzi Section, Northern China. J. Geol. 123, 355-367. Linnemann, U., Su, T., Kunzmann, L., et al., 2018. New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots. Geology. 46, 3-6. Liu, Y.S.C., Utescher, T., Zhou, Z.K., et al., 2011. The evolution of Miocene climates in North China: preliminary results of quantitative reconstructions from plant fossil records. Paleogeogr. Paleoclimatol. Paleoecol. 304, 308-317. Lu, L.M., Mao, L.F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. Nie, Z.L., Wen, J., Azuma, H., et al., 2008. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol. Phylogenet. Evol. 48, 1027- 1040. Palazzesi, L., Barreda, V.D., Cuitino, J.I., et al., 2014. Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nat. Commun. 5, 1-8. Pan, Y., Birdsey, R.A., Fang, J.Y., et al., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988-993. Piao, S.L., Fang, J.Y., Ciais, P., et al., 2009. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009-1013. Qin, S.Y., Zuo, Z.Y., Guo, C., et al., 2023. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol. Ecol. 32, 2850-2868. Quan, C., Liu, Z.H., Utescher, T., et al., 2014. Revisiting the Paleogene climate pattern of East Asia: a synthetic review. Earth Sci. Rev. 139, 213-230. Rao Mide, R. M., Steinbauer, M. J., Xiang, X. G., et al., 2018. Environmental and evolutionary drivers of diversity patterns in the tea family (Theaceae s.s.) across China. Ecol. Evol. 8, 11663-11676. Scotese, C. R., 2021. An atlas of Phanerozoic paleogeographic maps: the seas come in and the seas go out. Annu. Rev. Earth Planet Sci. 49, 679-728. Song, H.Z., Huang, L.L., Xiang, H.L.L., et al., 2023. First reliable Miocene fossil winged fruits record of Engelhardia in Asia through anatomical investigation. iScience 26, 106867. Song, Y.C., Da, L.J., 2016. Evergreen broad-leaved forest of East Asia. In: Box EO, ed. Vegetation Structure Andfunction at Multiple Spatial, Temporalandconceptual Scales. Switzerland: Springer International, 101-128. Song, Y-C. 2013. Evergreen Broad-Leaved Forests in China: Classification, Ecology, Conservation. Beijing, China: Higher Education Press. Spicer, R.A. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related? Plant Divers. 39, 233-244. Spicer, R.A., Herman, A.B., Liao, W.B., et al., 2014. Cool tropics in the middle Eocene: evidence from the Changchang flora, Hainan Island, China. Paleogeogr. Paleoclimatol. Paleoecol. 412, 1-16. Spicer, R.A., Yang, J., Herman, A.B., et al., 2016. Asian Eocene monsoons as revealed by leaf architectural signatures. Earth Planet Sci. Lett. 449, 61-68. Su, T., Jacques, F.M.B., Spicer, R.A., et al., 2013. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Clim. Past 9, 1911-1920. Su, T., Spicer, R. A., Li, S. H., et al., 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl. Sci. Rev. 6, 495-504. Sun, X.J., Wang, P.X., 2005. How old is the Asian monsoon system?-palaeobotanical records from China. Paleogeogr. Paleoclimatol. Paleoecol. 222, 181-222. Tanai, T., 1961, Neogene floral change in Japan. Journal of the Faculty Science, Hokkaido University, Series IV, 11, 119-398, pls.1-32. Tanai, T., Uemura, K., 1991. The Oligocene Noda Flora from the Yuyawan area of the western end of Honshu, Japan. Part 2. Bull. Natn. Sci. Mus. Ser. C. 17, 81–90. Tang, C.Q., 2015. Evergreen broad-leaved forests. In: Tang, C.Q., ed. The Subtropical Vegetation of Southwestern China: Plant Distribution, Diversity and Ecology. Utrecht: Springer. pp. 60-105. Tao, J.R., Kong, Z.C., 1973. The fossil florule and sporo-pollen assemblage of Shang-in coal series of Eryuan, Yunnan. Acta Bot. Sin. 15, 120-126. Tardif, D., Fluteau, F., Donnadieu, Y., et al., 2020. The origin of Asian monsoons: a modelling perspective. Clim. Past 16, 847-865. Tian, Y.M., Spicer, R.A., Huang, J., et al., 2021. New early Oligocene zircon U-Pb dates for the ‘Miocene’ Wenshan basin, Yunnan, China: biodiversity and paleoenvironment. Earth Planet Sci. Lett. 565, 116292. Trenberth, K.E., Stepaniak, D.P., Caron, J.M., 2000. The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 13, 3969-3993. Utescher, T., Bruch, A.A., Erdei, B., et al., 2014. The Coexistence Approach-theoretical background and practical considerations of using plant fossils for climate quantification. Paleogeogr. Paleoclimatol. Paleoecol. 410, 58-73. Valdes, P. J., Armstrong, E., Badger, M. P., et al., 2017. The BRIDGE HadCM3 family of climate models: HadCM3@ Bristol v1.0. Geosci. Model Dev. (GMD) 10, 3715-3743. Valdes, P. J., Scotese, C.R., Lunt, D.J., 2021. Deep ocean temperatures through time. Clim. Past 17, 1483-1506. Wang, B., Shi, G., Xu, C., et al., 2021. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Sci. Adv. 7, eabg0625. Wang, P.X., 2009. Global monsoon in a geological perspective. Chin. Sci. Bull. 54, 1113-1136. Wang, P.X., Wang, B., Cheng, H., et al., 2014. The global monsoon across timescales: coherent variability of regional monsoons. Clim. Past. 10, 2007-2052. Wang, Q., Spicer, R.A., Yang, J., et al., 2013. The Eocene climate of China, the early elevation of the Tibetan Plateau and the onset of the Asian Monsoon. Glob. Chang. Biol. 19, 3709-3728. Wang, Z.X., 2018. Fossil Plants with Microstructures from the Miocene of Zhangzhou, Fujian and Palaeoclimatic Reconstructions. PhD Thesis. Lanzhou University. West, C.K., Greenwood, D.R., Reichgelt, T., et al., 2020. Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes. Clim. Past 16, 1387-1410. Writing Group of Cenozoic Plant of China (WGCPC), 1978. Fossil Plants of China. Vol. 3: Cenozoic Plants from China (in Chinese). Science Press, Beijing. Willard, D.A., Donders, T.H., Reichgelt, T., et al., 2019. Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Global Planet. Change 178, 139-152. Wu, C.Y., 1995. Vegetation of China. Science Press, Beijing. Wu, F.L., Fang, X.M., Yang, Y.B., 2022a. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 684-700. Wu, M.X, Huang, J., Spicer, R.A., et al., 2022b. The early Oligocene establishment of modern topography and plant diversity on the southeastern margin of the Tibetan Plateau. Global Planet. Change 214, 103856. Wu, X.K., Zhang, H., Kodrul, T. M., et al., 2021. First fossil Fokienia (Cupressaceae) in South China and its palaeogeographic and palaeoecological implications. Front. Earth Sci. 9, 709663. Xiang, X.G., Mi, X.C., Zhou, H.L., et al., 2016. Biogeographical diversification of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broadleaved forests. J. Biogeogr. 43, 1310-1323. Xiang, X.G., Wang, W., Li, R.Q., et al., 2014. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect. Plant Ecol. Evol. Syst. 16, 101-110. Xiao, T.W., Yan, H.F., Ge, X.J., 2022. Plastid phylogenomics of tribe Perseeae (Lauraceae) yields insights into the evolution of East Asian subtropical evergreen broad-leaved forests. BMC Plant Biol. 22, 1-15. Xie, Y.L., Wu, F.L., Fang, X.M., 2019. Middle Eocene East Asian monsoon prevalence over southern China: evidence from palynological records. Global Planet. Change 175, 13-26. Xie, Y.L., Wu, F.L., Fang, X.M., 2020. A major environmental shift by the middle Eocene in southern China: evidence from palynological records. Rev. Palaeobot. Palynol.278, 104226. Xing, Y.W., Onstein, R.E., Carter, R.J., et al., 2014. Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected. Evolution 68, 2821-2832. Xu, J.X., Ferguson, D.K., Li, C.S., et al., 2008. Late Miocene vegetation and climate of the Luhe region in Yunnan, southwestern China. Rev. Palaeobot. Palynol. 148, 36-59. Yabe, A., 2009. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bull. Geol. Surv. Japan 59, 397-413. Yan, Y.J., Davis, C.C., Dimitrov, D., et al., 2021. Phytogeographic history of the tea family inferred through high-resolution phylogeny and fossils. Syst. Biol. 70, 1256-1271. Ye, J.W., Li, D.Z., 2022. Diversification of East Asian subtropical evergreen broadleaved forests over the last 8 million years. Ecol. Evol. 12, e9451. Yu, X.Q., Gao, L.M., Soltis, D.E., et al., 2017. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol. 215, 1235-1248. Zhang, Q., Yang, Y.C., Liu, B., et al., 2024. Meta-analysis provides insights into the origin and evolution of East Asian evergreen broad-leaved forests. New Phytol. 242, 2369-2379. Zhang, Q., Zhao, L., Folk, R.A., et al., 2022. Phylotranscriptomics of Theaceae: generic level relationships, reticulation and whole genome duplication. Ann. Bot. 129, 457- 471. Zhu, H., Huang, Y.J., Ji, X.P., et al., 2016. Continuous existence of Zanthoxylum (Rutaceae) in southwest China since the Miocene. Quat. Int. 392, 224-232. Zhu, H., Jacques, F.M.B., Wang, L., et al., 2015. Fossil endocarps of Aralia (Araliaceae) from the upper Pliocene of Yunnan in southwest China, and their biogeographical implications. Rev. Palaeobot. Palynol. 223, 94-103. |
[1] | Hai-Yao Chen, Zhi-Rong Zhang, Xin Yao, Ji-Dong Ya, Xiao-Hua Jin, Lin Wang, Lu Lu, De-Zhu Li, Jun-Bo Yang, Wen-Bin Yu. Plastid phylogenomics provides new insights into the systematics, diversification, and biogeography of Cymbidium (Orchidaceae) [J]. Plant Diversity, 2024, 46(04): 448-461. |
[2] | Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics [J]. Plant Diversity, 2024, 46(02): 219-228. |
[3] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[4] | Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains [J]. Plant Diversity, 2023, 45(01): 80-97. |
[5] | Feng-Luan Liu, Ya-Lan Dai, Thi Nga Hoang, Vichai Puripunyavanich, Primlarp Wasuwat Chukiatman, Mi Qin, Yan-Rong Fu, Yu-Chu Chen, Dai-Ke Tian. Genetic diversity and inferred ancestry of Asian lotus (Nelumbo nucifera) germplasms in Thailand and Vietnam [J]. Plant Diversity, 2023, 45(01): 69-79. |
[6] | Ai Song, Jia Liu, Shui-Qing Liang, Truong Van Do, Hung Ba Nguyen, Wei-Yu-Dong Deng, Lin-Bo Jia, Cédric Del Rio, Gaurav Srivastava, Zhuo Feng, Zhe-Kun Zhou, Jian Huang, Tao Su. Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications [J]. Plant Diversity, 2022, 44(04): 406-416. |
[7] | Pisal Chheang, David H. Hembry, Gang Yao, Shi-Xiao Luo. Diversity and species-specificity of brood pollination of leafflower trees (Phyllanthaceae: Glochidion) by leafflower moths (Lepidoptera: Epicephala) in tropical Southeast Asia (Cambodia) [J]. Plant Diversity, 2022, 44(02): 191-200. |
[8] | Yi-Min Tian, Jian Huang, Tao Su, Shi-Tao Zhang. Early Oligocene Itea (Iteaceae) leaves from East Asia and their biogeographic implications [J]. Plant Diversity, 2021, 43(02): 142-151. |
[9] | Peter Ashton, Hua Zhu. The tropical-subtropical evergreen forest transition in East Asia: An exploration [J]. Plant Diversity, 2020, 42(04): 255-280. |
[10] | Li Xue, Linbo Jia, Gi-soo Nam, Yongjiang Huang, Shitao Zhang, Yuqing Wang, Zhuo Zhou, Yongsheng Chen. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia [J]. Plant Diversity, 2020, 42(03): 155-167. |
[11] | Ke Xia, Lei Fan, Wei-bang Sun, Wen-yun Chen. Conservation and fruit biology of Sichou oak (Quercus sichourensis, Fagaceae) – A critically endangered species in China [J]. Plant Diversity, 2016, 38(05): 233-237. |
[12] | MA JinShuang. Nomenclatural Notes on Alien Vascular Plants in North America Originated from East Asia [J]. Plant Diversity, 2010, 32(01): 14-24. |
[13] | YANG Qing-Song , , XING Yao-Wu , , ZHOU Zhe-Kun. Modern Geographical Distribution of Tsuga and Its Climatic Conditions in the Asian Monsoon Region [J]. Plant Diversity, 2009, 31(05): 389-398. |
[14] | LIN Na-Na , , WANG Hong, LI De-Zhu. Comparative Morphology of Leaf Epidermis of the Tribe Mutisieae (Compositae) in East Asia and Its Related Groups [J]. Plant Diversity, 2008, 30(01): 51-63. |
[15] | LIANG Jun-Feng, . Lepiota jacobi (Agaricaceae) , a Species New to East Asia [J]. Plant Diversity, 2007, 29(06): 617-618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||