Plant Diversity ›› 2023, Vol. 45 ›› Issue (03): 315-325.DOI: 10.1016/j.pld.2022.11.002
• Articles • Previous Articles Next Articles
Shuang Tiea, Yong-Deng Heb,c,d, Amparo Lázaroe, David W. Inouyef,g, You-Hao Guoa, Chun-Feng Yangb,c
Received:
2022-06-10
Revised:
2022-11-01
Published:
2023-07-06
Contact:
You-Hao Guo,E-mail:yhguo@whu.edu.cn;Chun-Feng Yang,E-mail:cfyang@wbgcas.cn
Supported by:
Shuang Tie, Yong-Deng He, Amparo Lázaro, David W. Inouye, You-Hao Guo, Chun-Feng Yang. Floral trait variation across individual plants within a population enhances defense capability to nectar robbing[J]. Plant Diversity, 2023, 45(03): 315-325.
Add to citation manager EndNote|Ris|BibTeX
[1] Armbruster, W.S., 2017. The specialization continuum in pollination systems:diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31, 88-100. [2] Bangert, R.K., Turek, R.J., Martinsen, G.D., et al., 2005. Benefits of conservation of plant genetic diversity to arthropod diversity. Conserv. Biol. 19, 379-390. [3] Barker, J.L., Dornhaus, A., Bronstein, J.L., Muth, F., 2018. Learning about larceny:experience can bias bumble bees to rob nectar. Behav. Ecol. Sociobiol. 72, 1-11. [4] Barton, K., 2019. MuMIn:Multi-Model Inference. R package version 1.43.15. https://CRAN.R-project.org/package=MuMIn [5] Bates, D., Maechler, M., Bolker, B., et al., 2015. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1-48. [6] Benadi, G., Pauw, A., 2018. Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence. J. Ecol. 106, 1892-1901. [7] Bronstein, J.L., Barker, J.L., Lichtenberg, E.M., et al., 2017. The behavioral ecology of nectar robbing:why be tactic constant? Curr. Opin. Insect. Sci. 21, 14-18. [8] Brooks, M.E., Kristensen, K., Van, B.K.J., et al., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9, 378-400. [9] Cantino, P.D., Wagstaff, S.J., Olmstead, R.G., 1999. Caryopteris (Lamiaceae) and the conflict between phylogenetic and pragmatic considerations in botanical nomenclature. Syst. Bot. 23, 369-386. [10] Chalcoff, V.R., Aizen, M.A., Galetto, L., 2006. Nectar concentration and composition of 26 species from the temperate forest of South America. Ann. Bot. 97, 413-421. [11] Consul, P.C., 1989. Generalized Poisson distributions:properties and applications. New York, NY:Marcel Dekker. [12] Consul, P.C., Famoye, F., 1992. Generalized Poisson regression model. Commun. Stat. -Theory Methods 21, 89-109. [13] Delesalle, V.A., Mazer, S.J., 1995. The structure of phenotypic variation in gender and floral traits within and among populations of Spergularia marina (Caryophyllaceae). Am. J. Bot. 82, 798-810. [14] Fox, J., Weisberg, S., 2019. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA:Sage. URL:https://socialsciences.mcmaster.ca/jfox/Books/Companion/ [15] Galen, C., Cuba, J., 2001. Down the tube:pollinators, predators, and the evolution of flower shape in the alpine skypilot, Polemonium viscosum. Evolution 55, 1963-1971. [16] Galen, C., 1999. Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. Bioscience 49, 631-640. [17] Goulson, D., 1999. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant. Ecol. Evol. Syst. 2, 185-209. [18] Grant, V., 1949. Pollination systems as isolating mechanisms in angiosperms. Evolution 3, 82-97. [19] Harder, L.D., 1986. Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia 69, 309-315. [20] Hartig, F., 2021. DHARMa:residual diagnostics for hierarchical (Multi-Level/mixed) regression models. R package version 0.4.1.https://CRAN.R-project.org/package=DHARMa [21] Huang, J.G., Ma, Q., Rossi, S., et al., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl. Acad. Sci. U. S. A. 117, 20645-20652. [22] Hughes, A.R., Inouye, B.D., Johnson, M.T., et al., 2008. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609-623. [23] Inouye, D.W., 1980. The terminology of floral larceny. Ecology 61, 1251-1253. [24] Irwin, R.E., Bronstein, J.L., Manson, J.S., et al., 2010. Nectar robbing:ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271-292. [25] Irwin, R.E., Maloof, J.E., 2002. Variation in nectar robbing over time, space, and species. Oecologia 133, 525-533. [26] Ishii, H.S., Kadoya, E.Z., 2016. Legitimate visitors and nectar robbers on Trifolium pratense showed contrasting flower fidelity versus co-flowering plant species:could motor learning be a major determinant of flower constancy by bumble bees? Behav. Ecol. Sociobiol. 70, 377-386. [27] Jacquemyn, H., Brys, R., 2020. Lack of strong selection pressures maintains wide variation in floral traits in a food-deceptive orchid. Ann. Bot. 126, 445-453. [28] Johnson, D., Martin, F., Cairney, J.W., et al., 2012. The importance of individuals:intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New. Phytol. 194, 614-628. [29] Jump, A.S., Marchant, R., Penuelas, J., 2009. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51-58. [30] Kohl, P.L., Steffan-Dewenter, I., 2022. Nectar robbing rather than pollinator availability constrains reproduction of a bee-flowered plant at high elevations. Ecosphere 13, e4077. [31] Lara, C., Ornelas, J.F., 2001. Preferential nectar robbing of flowers with long corollas:experimental studies of two humming-bird species visiting three plant species. Oecologia 128, 263-273. [32] Lazaro, A., Vignolo, C., Santamaria, L., 2015. Long corollas as nectar barriers in Lonicera implexa:interactions between corolla tube length and nectar volume. Evol. Ecol. 29, 419-435. [33] Lichtenberg, E.M., Irwin, R.E., Bronstein, J.L., 2020a. Bumble bees are constant to nectar-robbing behaviour despite low switching costs. Anim. Behav. 170, 177-188. [34] Lichtenberg, E.M., Richman, S.K., Irwin, R.E., et al., 2020b. Competition for nectar resources does not affect bee foraging tactic constancy. Ecol. Entomol. 45, 904-909. [35] Maruyama, P.K., Vizentin-Bugoni, J., Dalsgaard, B., et al., 2015. Nectar robbery by a hermit hummingbird:association to floral phenotype and its influence on flowers and network structure. Oecologia 178, 783-793. [36] Mendez-Vigo, B., Gomaa, N.H., Alonso-Blanco, C., et al., 2013. Among- and within-population variation in flowering time of Iberian Arabidopsis thaliana estimated in field and glasshouse conditions. New. Phytol. 197, 1332-1343. [37] Nardone, E., Dey, T., Kevan, P.G., 2013. The effect of sugar solution type, sugar concentration and viscosity on the imbibition and energy intake rate of bumblebees. J. Insect Physiol. 59, 919-933. [38] Pattrick, J.G., Symington, H.A., Federle, W., et al., 2020. The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging. J. R. Soc. Interface 17, 20190632. [39] Pei, C., Chen, S.L. (Eds.), 1982. FLORA Reipublicae Popularis Sinicae:Volume 65:Verbenaceae. Beijing:Science Press. [40] R Core Team, 2019. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. [41] Raffard, A., Santoul, F., Cucherousset, J., et al., 2019. The community and ecosystem consequences of intraspecific diversity:a meta-analysis. Biol. Rev. 94, 648-661. [42] Richman, S.K., Irwin, R.E., Nelson, C.J., et al., 2017. Facilitated exploitation of pollination mutualisms:fitness consequences for plants. J. Ecol. 105, 188-196. [43] Rojas-Nossa, S.V., Sanchez, J.M., Navarro, L., 2016. Nectar robbing:a common phenomenon mainly determined by accessibility constraints, nectar volume and density of energy rewards. Oikos 125, 1044-1055. [44] Rojas-Nossa, S.V., Sanchez, J.M., Navarro, L., 2021. Nectar robbing and plant reproduction:an interplay of positive and negative effects. Oikos 130, 601-608. [45] Stoffel, M.A., Nakagaw, S., Schielzeth, H., 2020. partR2:Partitioning R2 in generalized linear mixed models. bioRxiv doi:10.1101/2020.07.26.221168 [46] Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., et al., 2012. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58-67. [47] Whittall, J.B., Hodges, S.A., 2007. Pollinator shifts drive increasingly long nectar spursin columbine flowers. Nature 447, 706-709. [48] Yang, C.F., Wang, Q.F., 2015. Nectarless flowers with deep corolla tubes in Pedicularis:does long pistil length provide an arena for male competition? Bot. J. Linn. Soc. 179, 526-532. [49] Ye, Z.M., Jin, X.F., Inouye, D.W., et al., 2018. Variation in composition of two bumble bee species across communities affects nectar robbing but maintains pollinator visitation rate to an alpine plant, Salvia przewalskii. Ecol. Entomol. 43, 363-370. [50] Ye, Z.M., Jin, X.F., Wang, Q.F., et al., 2017. Nectar replenishment maintains the neutraleffects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees. Ann. Bot. 119:1053-1059. [51] Zeileis, A., Kleiber, C., Jackman, S., 2008. Regression models for count data in R. J. Stat. Software 27, 1-25. http://www.jstatsoft.org/v27/i08/. [52] Zeileis, A., Hothorn, T., 2002. Diagnostic checking in regression relationships. R. News 2, 7-10. URLhttps://CRAN.R-project.org/doc/Rnews/. [53] Zuur, A.F., Ieno, E.N., 2016. Beginner's Guide to Zero-Inflated Models with R Newburgh:Highland Statistics Ltd. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||