Plant Diversity ›› 2024, Vol. 46 ›› Issue (01): 78-90.DOI: 10.1016/j.pld.2023.06.005
• Articles • Previous Articles Next Articles
Tongzhou Taoa, Richard I. Milneb, Jialiang Lia, Heng Yanga, Shiyang Wanga, Sihan Chena, Kangshan Maoa,c
Received:
2023-04-14
Revised:
2023-06-06
Online:
2024-01-25
Published:
2024-03-02
Contact:
Kangshan Mao,E-mail:maokangshan@163.com
Supported by:
Tongzhou Tao, Richard I. Milne, Jialiang Li, Heng Yang, Shiyang Wang, Sihan Chen, Kangshan Mao. Conservation genomic investigation of an endangered conifer, Thuja sutchuenensis, reveals low genetic diversity but also low genetic load[J]. Plant Diversity, 2024, 46(01): 78-90.
Add to citation manager EndNote|Ris|BibTeX
[1] Agrawal, A.F., Whitlock, M.C., 2012. Mutation load: the fitness of individuals in populations where deleterious alleles are abundant. Annu. Rev. Ecol. Evol. Syst. 43, 115-135. [2] Akaike, H., 1998. Information theory and an extension of the maximum likelihood principle. In Parzen, E., Tanabe, K., Kitagawa, G. (Eds.) Selected Papers of Hirotugu Akaike. Springer, New York, pp. 199-213. [3] Alexander, D.H., Lange, K., 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinf. 12, 1-6. [4] Allendorf, F.W., Hohenlohe, P.A., Luikart, G., 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697-709. [5] Altschul, S.F., Madden, T.L., Schaffer, A.A., et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. [6] Angeloni, F., Wagemaker, C., Jetten, M., et al., 2011. De novo transcriptome characterization and development of genomic tools for Scabiosa columbaria L. using next-generation sequencing techniques. Mol. Ecol. Resour. 11, 662-674. [7] Bertorelle, G., Raffini, F., Bosse, M., et al., 2022. Genetic load: genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23, 492-503. [8] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [9] Borthakur, D., Busov, V., Cao, X.H., et al., 2022. Current status and trends in forest genomics. For. Res. 2, 11. [10] Bortoluzzi, C., Bosse, M., Derks, M.F., et al., 2020. The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evol. Appl. 13, 330-341. [11] Ceballos, G., Ehrlich, P.R., Barnosky, A.D., et al., 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253. [12] Charlesworth, B., 2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195-205. [13] Chau, M.M., Reyes, W.R., Ranker, T.A., 2013. Ecological factors influencing growth of the endangered Hawaiian fern Marsilea villosa (Marsileaceae) and implications for conservation management. Am. J. Bot. 100, 1532-1543. [14] Chen, J., Bataillon, T., Glemin, S., et al., 2022. What does the distribution of fitness effects of new mutations reflect? Insights from plants. New Phytol. 233, 1613-1619. [15] Chen, J., Glemin, S., Lascoux, M., 2017. Genetic diversity and the efficacy of purifying selection across plant and animal species. Mol. Biol. Evol. 34, 1417-1428. [16] Chen, J., Li, L., Milesi, P., et al., 2019. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evol. Appl. 12, 1539-1551. [17] Chen, T., Chen, X., Zhang, S., et al., 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genom. Proteom. Bioinf. 19, 578-583. [18] Chen, Z., Ai, F., Zhang, J., et al., 2020. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world’s southernmost poplar (Populus ilicifolia). Plant J. 103, 430-442. [19] Cingolani, P., Platts, A., Wang, L.L., et al., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92. [20] Clark, P.U., Dyke, A.S., Shakun, J.D., et al., 2009. The last glacial maximum. Science 325, 710-714. [21] Clegg, M.T., Kahler, A.L., Weir, B.S., 1989. Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, MA. [22] Cui, Y.-M., Sun, B., Wang, H.-F., et al., 2015. Exploring the formation of a disjunctive pattern between Eastern Asia and North America based on fossil evidence from Thuja (Cupressaceae). PLoS One 10, e0138544. [23] Cui, Z., Chen, Y., Zhang, W., et al., 2011. Research history, glacial chronology and origins of Quaternary glaciations in China. Quat. Sci. 31, 749-764. [24] Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. [25] De Kort, H., Prunier, J.G., Ducatez, S., et al., 2021. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 1-11. [26] DePristo, M.A., Banks, E., Poplin, R., et al., 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491-498. [27] Diez-del-Molino, D., Sanchez-Barreiro, F., Barnes, I., et al., 2018. Quantifying temporal genomic erosion in endangered species. Trends Ecol. Evol. 33, 176-185. [28] Do, C., Waples, R.S., Peel, D., et al., 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209-214. [29] Do, R., Balick, D., Li, H., et al., 2015. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47, 126-131. [30] Dobin, A., Davis, C.A., Schlesinger, F., et al., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. [31] Dussex, N., Van Der Valk, T., Morales, H.E., et al., 2021. Population genomics of the critically endangered kakapo. Cell Genomics 1, 100002. [32] Dutheil, J.Y., 2020. Statistical Population Genomics. Springer Nature, New York. [33] Emms, D.M., Kelly, S., 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 1-14. [34] Excoffier, L., Dupanloup, I., Huerta-Sanchez, E., et al., 2013. Robust demographic inference from genomic and SNP data. PLos Genet. 9, e1003905. [35] Eyre-Walker, A., Keightley, P.D., 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610-618. [36] Frankham, R., Ballou, S.E.J.D., Briscoe, D.A., et al., 2002. Introduction to Conservation Genetics. Cambridge University Press, Cambridge. [37] Fu, L., Chin, C. M. 1992. China Plant Red Data Book. Science Press, Beijing. [38] Fu, L., Niu, B., Zhu, Z., et al., 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150-3152. [39] Funk, W.C., McKay. J.K., Hohenlohe, P.A., et al., 2012. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489-496. [40] Galtier, N., 2016. Adaptive protein evolution in animals and the effective population size hypothesis. PLoS Genetics 12, e1005774. [41] Godwin, J.L., Lumley, A.J., Michalczyk, L., et al., 2020. Mating patterns influence vulnerability to the extinction vortex. Global Change Biol. 26, 4226-4239. [42] Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. [43] Grantham, R., 1974. Amino acid difference formula to help explain protein evolution. Science 185, 862-864. [44] Grossen, C., Guillaume, F., Keller, L.F., et al., 2020. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11, 1-12. [45] Guo, J.L., Cao, W.J., Li, Z.M., et al., 2019. Conservation implications of population genetic structure in a threatened orchid Cypripedium tibeticum. Plant Divers. 41, 13-18. [46] Hedrick, P.W., Garcia-Dorado, A., 2016. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol. Evol. 31, 940-952. [47] Jordan, R., Breed, M.F., Prober, S.M., et al., 2019. How well do revegetation plantings capture genetic diversity? Biol. Lett. 15, 20190460. [48] Keightley, P.D., Jackson, B.C., 2018. Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics 209, 897-906. [49] Keller, L.F., Waller, D.M., 2002. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230-241. [50] Khan, A., Patel, K., Shukla, H., et al., 2021. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. U.S.A. 118, e2023018118. [51] Kim, C., Kim, D. K., Sun, H., et al., 2022. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea. Plant Divers. 44, 170-180. [52] Kleinman-Ruiz, D., Lucena-Perez, M., Villanueva, B., et al., 2022. Purging of deleterious burden in the endangered Iberian lynx. Proc. Natl. Acad. Sci. U.S.A. 119, e2110614119. [53] Klekowski, E.J., 1988. Genetic load and its causes in long-lived plants. Trees 2, 195-203. [54] Kohn, M.H., Murphy, W.J., Ostrander, E.A., et al., 2006. Genomics and conservation genetics. Trends Ecol. Evol. 21, 629-637. [55] Kondrashov, A.S., Crow, J.F., 1993. A molecular approach to estimating the human deleterious mutation rate. Hum. Mutat. 2, 229-234. [56] Korunes, K.L., Samuk, K., 2021. pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359-1368. [57] Kumar, P., Henikoff, S., Ng, P.C., 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073-1081. [58] Lamoreux, J.F., Morrison, J.C., Ricketts, T.H., et al., 2006. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212-214. [59] Lande, R., 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911-927. [60] Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48, 1460-1469. [61] Lange, R., Durka, W., Holzhauer, S.I., et al., 2010. Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets. Mol. Ecol. 19, 4936-4948. [62] Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. [63] Li, H., Handsaker, B., Wysoker, A., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. [64] Li, J., Milne, R.I., Ru, D., et al., 2020. Allopatric divergence and hybridization within Cupressus chengiana (Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Mol. Ecol. 29, 1250-1266. [65] Li, J., Zhang, Y., Rusham, M., et al., 2021. Seeing through the hedge: Phylogenomics of Thuja (Cupressaceae) reveals prominent incomplete lineage sorting and ancient introgression for Tertiary relict flora. Cladistics 38, 187-203. [66] Li, W.H., Wu, C.I., Luo, C.C., 1984. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 21, 58-71. [67] Li, Y.Y., Guan, S.M., Yang, S.Z., et al., 2012. Genetic decline and inbreeding depression in an extremely rare tree. Conserv. Genet. 13, 343-347. [68] Liu, J., Shi, S., Chang, E., et al., 2013. Genetic diversity of the critically endangered Thuja sutchuenensis revealed by ISSR markers and the implications for conservation. Int. J. Mol. Sci. 14, 14860-14871. [69] Liu, X., Fu, Y.X., 2020. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 1-9. [70] Lynch, M., Burger, R., Butcher, D., et al., 1993. The mutational meltdown in asexual populations. J. Hered. 84, 339-344. [71] Lynch, M., Conery, J., Burger, R., 1995. Mutation accumulation and the extinction of small populations. Am. Nat. 146,489-518. [72] Ma, H., Liu, Y., Liu, D., et al., 2021. Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation. Plant J. 107, 1533-1545. [73] Ma, Y., Liu, D., Wariss, H.M., et al., 2022. Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple. Mol. Ecol. 31, 767-779. [74] Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., et al., 2010. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867-2873. [75] Manners, V., Kumaria, S., Tandon, P., 2013. SPAR methods revealed high genetic diversity within populations and high gene flow of Vanda coerulea Griff ex Lindl (Blue Vanda), an endangered orchid species. Gene 519, 91-97. [76] Manni, M., Berkeley, M.R., Seppey, M., et al., 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647-4654. [77] Mantyka-pringle, C.S., Martin, T.G., Rhodes, J.R., 2012. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biol. 18, 1239-1252. [78] Miao, J., Farhat, P., Wang, W., et al., 2021. Evolutionary history of two rare endemic conifer species from the eastern Qinghai-Tibet Plateau. Ann. Bot. 128, 903-918. [79] Narasimhan, V., Danecek, P., Scally, A., et al., 2016a. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32, 1749-1751. [80] Narasimhan, V.M., Hunt, K.A., Mason, D., et al., 2016b. Health and population effects of rare gene knockouts in adult humans with related parents. Science 352, 474-477. [81] Nei, M., Maruyama, T., Chakraborty, R., 1975. The bottleneck effect and genetic variability in populations. Evolution 29, 1-10. [82] Ng, P.C., Henikoff, S., 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812-3814. [83] Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., et al., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [84] Ohta, T., 1992. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Evol. Syst. 23, 263-286. [85] Palkopoulou, E., Mallick, S., Skoglund, P., et al., 2015. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395-1400. [86] Palsboell, P.J., Berube, M., Allendorf, F.W., 2007. Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11-16. [87] Patil, I., 2021. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 6, 3167. [88] Price, A.L., Patterson, N.J., Plenge, R.M., et al., 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904-909. [89] Primmer, C.R., 2009. From conservation genetics to conservation genomics. Ann. N. Y. Acad. Sci. 1162, 357-368. [90] Purcell, S., Neale, B., Todd-Brown, K., et al., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575. [91] Qiao, Q., Zhang, C.Q., Milne, R.I., 2010. Population genetics and breeding system of Tupistra pingbianensis (Liliaceae), a naturally rare plant endemic to SW China. J. Syst. Evol. 48, 47-57. [92] Qin, A., Ding, Y., Jian, Z., et al., 2021. Low genetic diversity and population differentiation in Thuja sutchuenensis Franch., an extremely endangered rediscovered conifer species in southwestern China. Global Ecol. Conserv. 25, e01430. [93] Qin, A., Liu, B., Guo, Q., et al., 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecol. Conserv. 10, 139-146. [94] Robinson, J., Kyriazis, C.C., Yuan, S.C., et al., 2022. Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annu. Rev. Anim. Biosci. 11, 93-114. [95] Robinson, J.A., Raikkonen, J., Vucetich, L.M., et al., 2019. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci. Adv. 5, eaau0757. [96] Ru, D., Sun, Y., Wang, D., et al., 2018. Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process. Mol. Ecol. 27, 4875-4887. [97] Schoen, D.J., David, J.L., Bataillon, T.M., 1998. Deleterious mutation accumulation and the regeneration of genetic resources. Proc. Natl. Acad. Sci. U.S.A. 95, 394-399. [98] Shalev, T.J., El-Dien, O.G., Yuen, M.M., et al., 2022. The western redcedar genome reveals low genetic diversity in a self-compatible conifer. Genome Res. 32, 1952-1964. [99] Sim, N.L., Kumar, P., Hu, J., et al., 2012. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40, W452-W457. [100] Stewart, G.S., Morris, M.R., Genis, A.B., et al., 2017. The power of evolutionary rescue is constrained by genetic load. Evol. Appl. 10, 731-741. [101] Tallmon, D.A., Koyuk, A., Luikart, G., et al., 2008. COMPUTER PROGRAMS: onesamp: a program to estimate effective population size using approximate Bayesian computation. Mol. Ecol. Resour. 8, 299-301. [102] Tang, C.Q., Yang, Y., Ohsawa, M., et al., 2015. Community structure and survival of tertiary relict Thuja sutchuenensis (Cupressaceae) in the subtropical Daba mountains, Southwestern China. PLoS One 10, e0125307. [103] Tataru, P., Bataillon, T., 2019. polyDFEv2.0: testing for invariance of the distribution of fitness effects within and across species. Bioinformatics 35, 2868-2869. [104] Tataru, P., Mollion, M., Glemin, S., et al., 2017. Inference of distribution of fitness effects and proportion of adaptive substitutions from polymorphism data. Genetics 207, 1103-1119. [105] Teixeira, J.C., Huber, C.D., 2021. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U.S.A. 118, e2015096118. [106] Turner, T.F., Osborne, M.J., Moyer, G.R., et al., 2006. Life history and environmental variation interact to determine effective population to census size ratio. Proc. R. Soc. B 273, 3065-3073. [107] Vaser, R., Adusumalli, S., Leng, S.N., et al., 2016. SIFT missense predictions for genomes. Nat. Protoc. 11, 1-9. [108] Villanueva, R.A.M., Chen, Z.J., 2019. ggplot2: Elegant Graphics for Data Analysis. Taylor & Francis, Beijing. [109] Wei, J., Pei, X., Hu, X., et al., 2022. Applications of transcriptome in conifer species. Plant Cell Tissue Organ Cult. 150, 511-525. [110] Willi, Y., Kristensen, T.N., Sgro, C.M., et al., 2022. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc. Natl. Acad. Sci. U.S.A. 119, e2105076119. [111] Wilson, E.O., 1996. The diversity of life, Thinking About the Environment. In: Matthew A.C., Rory O'B. (Eds.) Routledge, England, pp. 193-195. [112] Xiang, Q., Fajon, A., Zhenyu, L., et al., 2002. Thuja sutchuenensis: a rediscovered species of the Cupressaceae. Bot. J. Linn. Soc. 139, 305-310. [113] Xie, H.X., Liang, X.X., Chen, Z.Q., et al., 2022. Ancient demographics determine the effectiveness of genetic purging in endangered lizards. Mol. Biol. Evol. 39, msab359. [114] Xue, Y., Bao, Y., Zhang, Z., et al., 2022. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Res. 51, 18-28. [115] Xue, Y., Prado-Martinez, J., Sudmant, P.H., et al., 2015. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242-245. [116] Yang, H., Li, J., Milne, R.I., et al., 2022. Genomic insights into the genotype-environment mismatch and conservation units of a Qinghai-Tibet Plateau endemic cypress under climate change. Evol. Appl. 15, 919. [117] Yang, Y., Li, N., Christian, T. et al., 2013. Thuja sutchuenensis. The IUCN Red List of Threatened Species 2013: e.T32378A2816862 (DOI: https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32378A2816862.en). Accessed on 15 May 2023. [118] Yang, Y., Ma, T., Wang, Z., et al., 2018. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nat. Commun. 9, 5449. [119] Yao, Z., Wang, X., Wang, K., et al., 2021. Chloroplast and nuclear genetic diversity explain the limited distribution of endangered and endemic Thuja sutchuenensis in China. Front. Genet. 12, 801229. [120] Zhang, X.J., Liu, X.F., Liu, D.T., et al., 2021. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations. Plant Divers. 43, 472-479. [121] Zhao, Y.J., Yin, G.S., Gong, X., 2023. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation. Plant Divers. (DOI: https://doi.org/10.1016/j.pld.2022.07.002). [122] Zheng, B., Xu, Q., Shen, Y., 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quat. Int. 97, 93-101. [123] Zhu, M., Cheng, Y., Wu, S., et al., 2022. Deleterious mutations are characterized by higher genomic heterozygosity than other genic variants in plant genomes. Genomics 114, 110290. |
[1] | Xue Li, Markus Ruhsam, Yi Wang, Hong-Ying Zhang, Xiao-Yan Fan, Lei Zhang, Jing Wang, Kang-Shan Mao. Wind-dispersed seeds blur phylogeographic breaks: The complex evolutionary history of Populus lasiocarpa around the Sichuan Basin [J]. Plant Diversity, 2023, 45(02): 156-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||