Plant Diversity ›› 2024, Vol. 46 ›› Issue (06): 732-743.DOI: 10.1016/j.pld.2024.06.004
• Articles • Previous Articles
José Luiz Alves Silvaa, Alexandre Souzab, Angela Pierre Vitóriaa
Received:
2024-03-16
Revised:
2024-06-20
Published:
2024-12-26
Contact:
José Luiz Alves Silva,E-mail:luizecologia@pq.uenf.br
Supported by:
José Luiz Alves Silva, Alexandre Souza, Angela Pierre Vitória. Detection of functional diversity gradients and their geoclimatic filters is sensitive to data types (occurrence vs. abundance) and spatial scales (sites vs. regions)[J]. Plant Diversity, 2024, 46(06): 732-743.
Add to citation manager EndNote|Ris|BibTeX
Alvares, C.A., Stape, J.L., Sentelhas, P.C., et al., 2013. Koppen’s climate classification map for Brazil. Meteorol. Z. 22, 711-728. https://doi.org/10.1127/0941-2948/2013/0507. Anderson, M.J., Crist, T.O., Chase, J.M., et al., 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19 -28. https://doi.org/10.1111/j.1461-0248.2010.01552.x. Andrew, S.C., Mokany, K., Falster, D.S., et al., 2021. Functional diversity of the Australian flora: strong links to species richness and climate. J. Veg. Sci. 32, e13018. https://doi.org/10.1111/jvs.13018. Barton, K., 2023. MuMIn: multi-model inference. R package version 1.47.5, <https://CRAN.R-project.org/package=MuMIn>. Barwell, L.J., Isaac, N.J., Kunin, W.E., 2015. Measuring β-diversity with species abundance data. J. Animal Ecol. 84, 1112-1122. https://doi.org/10.1111/1365-2656.12362. Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134-143. https://doi.org/10.1111/j.1466-8238.2009.00490.x. Baselga, A., 2016. Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods Ecol. Evol. 8, 799-808. https://doi.org/10.1111/2041-210X.12693. Baselga, A., Gomez-Rodriguez, C., 2021. Assessing the equilibrium between assemblage composition and climate: a directional distance-decay approach. J. Animal Ecol. 90, 1906-1918. https://doi.org/10.1111/1365-2656.13509. Bates, D., Mächler, M., Bolker, B., et al., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48, https://doi.org/org/10.18637/jss.v067.i01. Bellard, C., Leclerc, C., Leroy, B., et al., 2014. Vulnerability of biodiversity hotspots to global change. Global. Ecol. Biogeogr. 23, 1376-1386. https://doi.org/10.1111/geb.12228. Bevilacqua, S., Terlizzi, A., 2020. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. 26, 743-757. https://doi.org/10.1111/ddi.13025. Brown, J.L., Paz, A., Reginato, M., et al., 2019. Seeing the forest through many trees: multi-taxon patterns of phylogenetic diversity in the Atlantic Forest hotspot. Divers. Distrib. 26, 1160-1176. https://doi.org/10.1111/ddi.13116. Bruelheide, H., Dengler, J., Purschke, O., et al., 2018. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906-1917. https://doi.org/10.1038/s41559-018-0699-8. Cadotte, M.W., Tucker, C.M., 2017. Should environmental filtering be abandoned? Trends Ecol. Evol. 32, 429-437. https://doi.org/10.1016/j.tree.2017.03.004. Cantidio, L.S., Souza, A.F., 2019. Aridity, soil and biome stability influence plant ecoregions in the Atlantic Forest, a biodiversity hotspot in South America. Ecography 42, 1887-1898. https://doi.org/10.1111/ecog.04564. Cardoso, P., Mammola, S., Rigal, F., et al., 2023. BAT: biodiversity assessment tools. R package version 2.9.3, <https://CRAN.R-project.org/package=BAT>. Carnaval, A.C., Waltari, E., Rodrigues, M.T., et al., 2014. Prediction of phylogeographic endemism in an environmentally complex biome. Philos. Trans. R. Soc. B-Biol. Sci. 281, e20141461. https://doi.org/10.1098/rspb.2014.1461. Cupertino-Eisenlohr, M.A., Eisenlohr, P.V., Barros-Rosa, L., et al., 2021. Environmental variables and dispersal barriers explain broad-scale variation in tree species composition across Neotropical non-flooded evergreen forests. J. Veg. Sci. 32, e13026. https://doi.org/10.1111/jvs.13026. de la Riva, E.G., Violle, C., Perez-Ramos, I.M., et al., 2018. A multidimensional functional trait approach reveals the imprint of environmental stress in mediterranean woody communities. Ecosystems 21, 248-262. https://doi.org/10.1007/s10021-017-0147-7. de la Sancha, N.U., Maestri, R., Bovendorp, R.S., et al., 2020. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182-195. https://doi.org/10.1111/btp.12745. Diaz, S., Kattge, J., Cornelissen, J.H.C., et al., 2016. The global spectrum of plant form and function. Nature 529, 167-171. https://doi.org/10.1038/nature16489. Echeverria-Londono, S., Enquist, B.J., Neves, D.M., et al., 2018. Plant functional diversity and the biogeography of biomes in North and South America. Front. Ecol. Evol. 6, e00219. https://doi.org/10.3389/fevo.2018.00219. ESRI, 2012. ArcGIS Release 10.1. Redlands, CA, USA: Environmental Systems Research Institute. Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Intern. J. Climat. 37, 4302-4315. https://doi.org/10.1002/joc.5086. Freitas, C., Brum, F.T., Cassia-Silva, C., et al., 2021. Incongruent spatial distribution of taxonomic, phylogenetic, and functional diversity in neotropical cocosoid palms. Front. For. Glob. Change. 4, e739468. https://doi.org/10.3389/ffgc.2021.739468. Goolsby, E.W., Bruggeman, J., Ane, C., 2017. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22-27. https://doi.org/10.1111/2041-210X.12612. Goslee, S.C., Urban, D.L., 2007. The ecodist package for dissimilarity-based analysis of ecological data. J. Statist. Software 22, 1-19. https://doi.org/10.18637/jss.v022.i07. Graco-Roza, C., Aarnio, S., Abrego, N., et al., 2022. Distance decay 2.0-a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399-1421. https://doi.org/10.1111/geb.13513. Graler, B., Pebesma, E., Heuvelink, G., 2016. Spatio-temporal interpolation using gstat. The R Journal. 8, 204-218. https://doi.org/10.32614/RJ-2016-014. Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169-1194. https://www.jstor.org/stable/2460262. Harrison, S., Spasojevic, M.J., Li, D., 2020. Climate and plant community diversity in space and time. Proc. Natl. Acad. Sci. U.S.A. 117, 4464-4470. https://doi.org/10.1073/pnas.1921724117. Hengl, T., de Jesus, J.M., Heuvelink, G.B.M., et al., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, 1-40. https://doi.org/10.1371/journal.pone.0169748. Hortal, J., de Bello, F., Diniz-Filho, J.A.F., et al., 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400. Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. https://doi.org/10.1016/j.pld.2022.05.005. Karadimou, E., Kallimanis, A., Tsiripidis, I., et al., 2016. Functional diversity exhibits a diverse relationship with area, even a decreasing one. Sci. Rep. 6, e35420. https://doi.org/10.1038/srep35420. Keil, P., Chase, J.M., 2019. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390-399. https://doi.org/10.1038/s41559-019-0799-0. Klipel, J., Bergamin, R.S., Esquivel-Muelbert, A., et al., 2022. Climatic distribution of tree species in the Atlantic Forest. Biotropica 54, 1170-1181. https://doi.org/10.1111/btp.13140. Lammana, C., Blonder, B., Violle, C., et al., 2014. Functional trait space and the latitudinal diversity gradient. Proc. Natl. Acad. Sci. U.S.A. 111, 13745-13750. https://doi.org/10.1073/pnas.1317722111. Legendre, P., Legendre, L.F., 2012. Numerical Ecology, third ed. Elsevier, Amsterdam. Leitão, R.P., Zuanon, J., Villéger, S., et al., 2016. Rare species contribute disproportionately to the functional structure of species assemblage. Proc. Royal Soc. B-Biol. Sci. 283, e20160084, https://doi.org/10.1098/rspb.2016.0084. Lima, R.A.F., Oliveira, A.A., Pitta, G.R., et al., 2020. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Commun. 11, 6347.-6347. https://doi.org/10.1038/s41467-020-20217-w. Liu, Z., Heino, J., Soininen, J., et al., 2022. Different responses of incidence-weighted and abundance-weighted multiple facets of macroinvertebrate beta diversity to urbanization in a subtropical river system. Ecol. Indicat. 143, e109357. https://doi.org/10.1016/j.ecolind.2022.109357. Mammola, S., Cardoso, P., 2020. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986-995. https://doi.org/10.1111/2041-210X.13424. Mammola, S., Carmona, C.P., Guilherme, T., et al., 2021. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869-1885. https://doi.org/10.1111/1365-2435.13882. McFadden, I.R., Sandel, B., Tsirogiannis, C., et al., 2019. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic β diversity. Ecol. Lett. 22, 1126-1135. https://doi.org/10.1111/ele.13269. Memarsadeghi, N., Mount, D.M., Netanyahu, N.S., et al., 2007. A fast implementation of the ISODATA clustering algorithm. Intern. J. Comp. Geo. Applic. 17, 71-103. https://doi.org/10.1142/S0218195907002252. Mittermeier, R.A., Turner, W.R., Larsen, F.W., et al., 2011. Global biodiversity conservation: the critical role of hotspots. In: Biodiversity Hotspots, pp. 3-22. Berlin, Germany: Springer. Mori, A., Isbell, F., Seidl, R., 2018. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549-564. https://doi.org/10.1016/j.tree.2018.04.012. Moulatlet, G.M., Kusumoto, B., Pinto-Ledezma, J., et al., 2023. Global patterns of phylogenetic beta-diversity components in angiosperms. J. Veg. Sci. 34, e13203. https://doi.org/10.1111/jvs.13203. Naimi, B., Hamm, Na., Groen, T.A., et al., 2014. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x. Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x. Neves, D.M., Dexter, K.G., Pennington, R.T., et al., 2017. Dissecting a biodiversity hotspot: The importance of environmentally marginal habitats in the Atlantic Forest Domain of South America. Divers. Distrib. 23, 898-909. https://doi.org/10.1111/ddi.12581. Neves, D.M., Dexter, K.G., Baker, T.R., et al., 2020. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188. https://doi.org/10.1038/s41598-019-55621-w. Oliveira, F.J.M, Bini, L.M., de Lima, L.B., et al., 2023. Environmental and spatial factors are poor predictors of fish beta diversity in Cerrado streams. Oecol. Australis 27, 389-402. https://doi.org/10.4257/oeco.2023.2704.04. Oliveira-Filho, A.T., Fontes, M.A.L., 2000. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793-810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x. Olson, D.M., Dinerstein, E., Wikramanayake, E.D., et al., 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. Paz, A., Hernandez, L., Melo, L.S.O., et al., 2022. Extreme environments filter functionally rich communities of Atlantic Forest treefrogs along altitudinal and latitudinal gradients. Ecography 2022, e06138. https://doi.org/10.1111/ecog.06138. Petchey, O.L., Gaston, K., 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741-758. https://doi.org/10.1111/j.1461-0248.2006.00924.x. Pinto-Ledezma, J.N., Larkin, D.J., and Cavender-Bares, J., 2018. Patterns of beta diversity of vascular plants and their correspondence with biome boundaries across North America. Front. Ecol. Evol. 6, e00194. https://doi.org/10.3389/fevo.2018.00194. R Core Team, 2022. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/. Rezende, C.L., Scarano, F.R., Assad, E.D., et al., 2018. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspec. Ecol. Conserv. 16, 208-214. https://doi.org/10.1016/j.pecon.2018.10.002. Rezende, V.L., Pontara, V., Bueno, M.L., et al., 2020. Phylogenetic regionalization of tree assemblages reveals novel patterns of evolutionary affinities in the Atlantic Forest. J. Biogeogr. 48, 798-810. https://doi.org/10.1111/jbi.14038. Ribeiro, M.C., Metzger, J.P., Martensen, A.C., et al. 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? implications for conservation. Biol. Conserv. 142, 1141.-115. https://doi.org/10.1016/j.biocon.2009.02.021. Scarano, F.R., 2009. Plant communities at the periphery of the Atlantic rain forest: rare-species bias and its risks for conservation. Biol. Conserv. 142, 1201-1208. https://doi.org/10.1016/j.biocon.2009.02.027. Shen, G., He, F., Waagepetersen, R., et al., 2013. Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. Ecology 94, 2436-2443. https://doi.org/10.1890/12-1983.1. Silva, J.L.A., Souza, A.F., Vitoria, A.P., 2021a. Leaf trait integration mediates species richness variation in a species-rich neotropical forest domain. Plant Ecol. 222, 1183-1195. https://doi.org/10.1007/s11258-021-01169-7. Silva, J.L.A., Souza, A.F., Vitoria, A.P., 2021b. Historical and current environmental selection on functional traits of trees in the Atlantic Forest biodiversity hotspot. J. Veg. Sci. 32, e13049. https://doi.org/10.1111/jvs.13049. Silva, J.L.A., Souza, A.F., Vitoria, A.P., 2022. Mapping functional tree regions of the Atlantic Forest: how much is left and opportunities for conservation. Env. Conserv. 49, 164-171, https://doi.org/10.1017/S0376892922000212. Silva, J.L.A., Souza, A.F., Vitoria, A.P., 2024. Supporting Information for the paper: Detection of functional diversity patterns and their geoclimatic filters is sensitive to data types (occurrence vs. abundance) and spatial scales (sites vs. regions). Figshare. Dataset. https://doi.org/10.6084/m9.figshare.25423291.v1. Suarez-Castro, A.F., Raymundo, M., Bimler, M., et al., 2022. Using multi-scale spatially explicit frameworks to understand the relationship between functional diversity and species richness. Ecography 2022, e05844. https://doi.org/10.1111/ecog.05844. Ulrich, W., Almeida-Neto, M., Gotelli, N.J., 2009. A consumer's guide to nestedness analysis. Oikos 118, 3-17. https://doi.org/10.1111/j.1600-0706.2008.17053.x. Venter, O., Sanderson, E.W., Magrach, A., et al., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1-11. https://doi.org/10.1038/ncomms12558. Violle, C., 2007. Let the concept of trait be functional! Oikos 116, 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x. Violle, C., Reich, P.B., Pacala, S.W., et al., 2014. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. U.S.A. 111, 13690-13696. https://doi.org/10.1073/pnas.1415442111. Vitoria, A.P., Alves, L.F., Santiago, L.S., 2019. Atlantic forest and leaf traits: an overview. Trees 33, 1535-1547. https://doi.org/10.1007/s00468-019-01864-z. Wackernagel, H., 2003. Multivariate geostatistics: an introduction with applications. Springer, Berlin. Wang, Z., Fang, J. Tang, Z., et al., 2012. Geographical patterns in the beta diversity of China's woody plants: the influence of space, environment and range size. Ecography 35, 1092-1102. https://doi.org/10.1111/j.1600-0587.2012.06988.x. Westoby, M.A., 1998. leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213-227. https://doi.org/10.1023/A:1004327224729. Whittaker, R.H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 279-338. https://doi.org/10.2307/1943563. Wright, I.J., Westoby, M., Reich, P.B., et al., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403. Xu, W-B., Svenning, J-C., Chen, G-K., et al., 2019. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. USA. 52, 26674-26681, https://doi.org/ 10.1073/pnas.1911851116. Xu, W-B., Guo, W-Y., Serra-Diaz, J.M., et al., 2023. Global beta-diversity of angiosperm trees is shaped by Quaternary climate change. Sci. Adv. 9, eadd8553, https://doi.org/ 10.1126/sciadv.add855. Zhang, H., Chen, H.Y.H., Lian, J., et al., 2018. Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Funct. Ecol. 32, 1379-1389. https://doi.org/10.1111/1365-2435.13079. Zhao, Y., Sanders, N.J., Liu, J., et al., 2021. β diversity among ant communities on fragmented habitat islands: the roles of species trait, phylogeny and abundance. Ecography 44, 1568-1578. https://doi.org/10.1111/ecog.05723. Zizka, A., ter Steege, H., Pessoa, M.D.C.R., et al., 2017. Finding needles in the haystack: where to look for rare species in the American tropics. Ecography 41, 321-330. https://doi.org/10.1111/ecog.02192. Zuur, A.F., Ieno, E.N., Walker, N.J., et al., 2009. Mixed effects models and extensions in ecology with R. New York, NY: Springer. |
[1] | Libing Pan, Xiaoyang Song, Wenfu Zhang, Jie Yang, Min Cao. Seedling dynamics differ between canopy species and understory species in a tropical seasonal rainforest, SW China [J]. Plant Diversity, 2024, 46(05): 671-677. |
[2] | Ling-Yun Wu, Shuang-Quan Huang, Ze-Yu Tong. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats (Fagopyrum) in the Hengduan Mountains [J]. Plant Diversity, 2024, 46(05): 661-670. |
[3] | Wen-Hao Zeng, Shi-Dan Zhu, Ying-Hua Luo, Wei Shi, Yong-Qiang Wang, Kun-Fang Cao. Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes, species richness and precipitation [J]. Plant Diversity, 2024, 46(04): 530-536. |
[4] | Guillermo Bañares-de-Dios, Manuel J. Macía, Gabriel Arellano, Íñigo Granzow-de la Cerda, Julia Vega-Álvarez, Itziar Arnelas, Carlos I. Espinosa, Norma Salinas, Luis Cayuela. Woody plant taxonomic, functional, and phylogenetic diversity decrease along elevational gradients in Andean tropical montane forests: Environmental filtering and arrival of temperate taxa [J]. Plant Diversity, 2024, 46(04): 491-501. |
[5] | Shi-Guang Wei, Lin Li, Kun-Dong Bai, Zhi-Feng Wen, Jing-Gang Zhou, Qin Lin. Community structure and species diversity dynamics of a subtropical evergreen broad-leaved forest in China: 2005 to 2020 [J]. Plant Diversity, 2024, 46(01): 70-77. |
[6] | Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America [J]. Plant Diversity, 2023, 45(04): 369-384. |
[7] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[8] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae) [J]. Plant Diversity, 2021, 43(01): 1-14. |
[9] | Leonie Monks, Sarah Barrett, Brett Beecham, Margaret Byrne, Alanna Chant, David Coates, J. Anne Cochrane, Andrew Crawford, Rebecca Dillon, Colin Yates. Recovery of threatened plant species and their habitats in the biodiversity hotspot of the Southwest Australian Floristic Region [J]. Plant Diversity, 2019, 41(02): 59-74. |
[10] | Xiaqin Luo, Min Cao, Min Zhang, Xiaoyang Song, Jieqiong Li, Akihiro Nakamura, Roger Kitching. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China [J]. Plant Diversity, 2017, 39(05): 273-286. |
[11] | Lu Meng-Meng-, CI Xiu-Qin-, YANG Guo-Ping-, LI Jie. DNA Barcoding of Subtropical Forest Trees——A Study from Ailao Mountains Nature Reserve, Yunnan, China [J]. Plant Diversity, 2013, 35(6): 733-741. |
[12] | PEI Nan-Cai. Building a Subtropical Forest Community Phylogeny Based on Plant DNA Barcodes from Dinghushan Plot [J]. Plant Diversity, 2012, 34(3): 263-270. |
[13] | CHEN Zhang - He, ZHU Su - Qin, LI Shao - Shan, GUO Zhi - Hua, ZHANG De - Ming. Effects of UV - B Radiation on Seedling Growth of Several Woody Species in the Southern Subtropical Forest [J]. Plant Diversity, 2000, 22(04): 1-3. |
[14] | Cao Min, Tang Yong, Zhang Jianhou, Sheng Caiyu. STORAGE AND DOMINANTS IN SOIL SEED BANKS UNDER THE TROPICAL FORESTS OF XISHUANGBANNA [J]. Plant Diversity, 1997, 19(02): 1-3. |
[15] | SUN Hang, ZHOU Zhe-Kun, YU Hon-Yuan. A PRELIMINARY PROBE INTO THE SECONDARY SUCCESSION SERIES OF TROPICAL FORESTS IN THE BIG BEND GORGE OF YALU TSANGPO RIVER IN S.E.TIBET, E.HIMALAYAS [J]. Plant Diversity, 1996, 18(03): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||