Plant Diversity ›› 2022, Vol. 44 ›› Issue (01): 70-82.DOI: 10.1016/j.pld.2021.05.004
• Articles • Previous Articles Next Articles
Ying-Min Zhanga, Li-Jun Hana, Cong-Wei Yanga, Zi-Li Yinb, Xing Tiana, Zi-Gang Qiana,b, Guo-Dong Lia,b
Received:
2021-01-07
Revised:
2021-05-19
Online:
2022-02-25
Published:
2022-03-12
Contact:
Zi-Gang Qian, Guo-Dong Li
Supported by:
Ying-Min Zhang, Li-Jun Han, Cong-Wei Yang, Zi-Li Yin, Xing Tian, Zi-Gang Qian, Guo-Dong Li. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships[J]. Plant Diversity, 2022, 44(01): 70-82.
Add to citation manager EndNote|Ris|BibTeX
Aii, J., Kishima, Y., Mikami, T., et al., 1997. Expansion of the IR in the chloroplast genomes of buckwheat species is due to incorporation of an SSC sequence that could be mediated by an inversion. Curr. Genet. 31, 276-279. https://doi.org/10.1007/s002940050206. Amiryousefi, A., Hyvonen, J., Poczai, P., 2018. IRscope:an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031.https://doi.org/10.1093/bioinformatics/bty220. Asaf, S., Khan, A.L., Khan, M.A., et al., 2018. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species.PLoS One 13, e0192966. https://doi.org/10.1371/journal.pone.0192966. Bodin, S.S., Kim, J.S., Kim, J.H., 2013. Complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae):comparative genomics and evaluation of universal primers for Liliales. Plant Mol. Biol. Rep. 31, 1407-1421. https://doi.org/10.1007/s11105-013-0616-x. Bodkin, N.L., 1978. A Revision of North American Melanthium L. (Liliaceae). Ph.D.dissertation. University of Maryland, College Park, Maryland, USA. Bremer, B., Bremer, K., Chase, M.W., et al., 2003. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG II. Bot. J. Linn. Soc. 141, 399-436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x. Bulmer, M.G., 1991. The selection-mutation-drift theory of synonymous codon usage. Genetics 129, 897-907. https://doi.org/10.1016/1050-3862(91)90016-K. Chandler, C.M., McDougal, O.M., 2014. Medicinal history of north American Veratrum. Phytochemistry Rev. 13, 671-694. https://doi.org/10.1007/s11101-013-9328-y. Chase, M.W., Christenhusz, M.J.M., Fay, M.F., et al., 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG IV. Bot. J. Linn. Soc. 181, 1657-1669. https://doi.org/10.1111/boj.12385. Chen, X.Q., Takahashi, H., 2000. Veratrum Linnaeus. In:Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China, vol. 24. Science Press, Beijing, China, pp. 82-85. Chumley, T.W., Palmer, J.D., Mower, J.P., et al., 2006. The complete chloroplast genome sequence of Pelargonium×hortorum:organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol.Biol. Evol. 11, 2175-2190. https://doi.org/10.1093/molbev/msl089. Cong, Y., Wu, Y., Shen, S., et al., 2020. A structure-activity relationship between the Veratrum alkaloids on the antihypertension and DNA damage activity in mice.Chem. Biodivers. 17, e1900473 https://doi.org/10.1002/cbdv.201900473. Cummings, H.S., Hershey, J.W.B., 1994. Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J. Bacteriol. 176, 198-205. https://doi.org/10.1128/jb.176.1.198-205.1994. Dierckxsens, N., Mardulyn, P., Smits, G., 2017. NOVOPlasty:de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18. https://doi.org/10.1093/nar/gkw955. Do, H.D.K., Kim, J.S., Kim, J.H., 2013. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Gene 530, 229-235. https://doi.org/10.1016/j.gene.2013.07.100. Doyle, J.J., Davis, J.I., Soreng, R.J., et al., 1992. Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. U.S.A. 89, 7722-7726.https://doi.org/10.1073/pnas.89.16.7722. Frazer, K.A., Pachter, L., Poliakov, A., et al., 2004. VISTA:computational tools for comparative genomics. Nucleic Acids Res. 32, W273eW279. https://doi.org/10.1093/nar/gkh458. Greiner, S., Lehwark, P., Bock, R., 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes.Nucleic Acids Res. 47, W59eW64. https://doi.org/10.1093/nar/gkz238. Gu, C., Ma, L., Wu, Z., et al., 2019. Comparative analysis of chloroplast genomes from 22 Lythraceae species:inferences for phylogenetic relationships and genome evolution within Myrtales. BMC Plant Biol. 19, 281. https://doi.org/10.1186/s12870-019-1870-3. Han, L.J., Liu, Y.Y., Zhang, Y.M., et al., 2019. The complete chloroplast genome and phylogenetic analysis of Veratrum mengtzeanum Loes. F. (Liliaceae). Mitochondrial DNA 4, 4170-4171. https://doi.org/10.1080/23802359.2019. 1693926. Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755. https://doi.org/10.1093/bioinformatics/17.8.754. Jansen, R.K., Kaittanis, C., Saski, C., et al., 2006. Phylogenetic analysis of Vitis(Vitaceae) based on complete chloroplast genome sequences:effects of taxon sampling and phylogenetic methods on resolving relationships among rosids.BMC Evol. Biol. 6, 32. https://doi.org/10.1186/1471-2148-6-32. Kalyaanamoorthy, S., Minh, B., Wong, T., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. https://doi.org/10.1038/nmeth.4285. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199. Kikkawa, H.S., Tsuge, K., Kubota, S., et al., 2017. Species identification of white false hellebore (Veratrum album subsp. oxysepalum) using real-time PCR. Forensic Sci.Int. 275, 160-166. https://doi.org/10.1016/j.forsciint.2017.02.002. Kim, K.J., Lee, H.L., 2004. Complete chloroplast genome sequence from Korean Ginseng (Panax schiseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11, 247-261. https://doi.org/10.1093/dnares/11.4.247. Kim, J.O., Tamura, M.N., Fuse, S., et al., 2014. Taxonomic status and phylogeny of Veratrum section Veratrum (Melanthiaceae) in Korea and Japan based on chloroplast and nuclear sequence data. Plant Systemat. Evol. 300, 75-89. https://doi.org/10.1007/s00606-013-0861-3. Kim, S.C., Kim, J.S., Chase, M.W., et al., 2016. Molecular phylogenetic relationships of Melanthiaceae (Liliales) based on plastid DNA sequences. Bot. J. Linn. Soc. 181, 567-584. https://doi.org/10.1111/boj.12405. Kumar, S., Stecher, G., Li, M., et al., 2018. MEGA X:molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549. https://doi.org/10.1093/molbev/msy096. Kupchan, S.M., Zimmerman, J.H., Afonso, A., 1961. The alkaloids and taxonomy of Veratrum and related genera. Lloydia 24, 1-26. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., et al., 2001. REPuter:the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29 https://doi.org/10.1093/nar/29.22.4633, 4633-4622. Kurtz, S., Phillippy, A., Delcher, A.L., et al., 2004. Versatile and open software for comparing large genomes. Genome Biol. 5, R12. https://doi.org/10.1186/gb-2004-5-2-r12. Li, X., Yang, Y., Henry, R.J., et al., 2015. Plant DNA barcoding:from gene to genome.Biol. Rev. Camb. Phil. Soc. 90, 157-166. https://doi.org/10.1111/brv.12104. Li, Q., Yang, K.X., Zhao, Y.L., et al., 2016. Potent anti-inflammatory and analgesic steroidal alkaloids from Veratrum taliense. J. Ethnopharmacol. 179, 274-279.https://doi.org/10.1016/j.jep.2015.12.059. Li, Y., Sylvester, S.P., Li, M., et al., 2019. The complete plastid genome of Magnolia zenii and genetic comparison to Magnoliaceae species. Molecules 24, 261.https://doi.org/10.3390/molecules24020261. Liao, W.J., Yuan, Y.M., Zhang, D.Y., 2007. Biogeography and evolution of flower color in Veratrum (Melanthiaceae) through inference of a phylogeny based on multiple DNA markers. Plant Systemat. Evol. 267, 177-190. https://doi.org/10.1007/s00606-007-0528-z. Linnaeus, C., 1753. Species plantarum. Stockholm, Holmiae, Impensis L. Salvii. 1, 2. Loesener, O., 1926. Studien über die Gattung Veratrum und ihre Verbreitung. Verh. Bot. Ver. Prov. Brandenb. 68, 105-166. Loesener, O., 1927. Übersicht über Arten der Gattung Veratrum, Teil I. Feddes Repert.Specierum Nov. Regni Veg. 24, 61-72. Loesener, O., 1928. Übersicht über Arten der Gattung Veratrum, Schluss. Feddes Repert. Specierum Nov. Regni Veg. 25, 1-10. Ma, H.F., Sima, Y.K., Zhang, D., et al., 2019. Chemical constituents of the volatile oils from the leaves of three Michelia species. J. Northwest For. Univ. 34, 212-216. Millen, R.S., Olmstead, R.G., Adams, K.L., et al., 2001. Many parallel losses of infa from chloroplast dna during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13, 645-658. https://doi.org/10.1105/tpc.13.3.645. Moore, M.J., Soltis, P.S., Bell, C.D., et al., 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci.U.S.A. 107, 4623-4628. https://doi.org/10.1073/pnas.0907801107. Mudunuri, S.B., Nagarajaram, H.A., 2007. IMEx:imperfect microsatellite extractor.Bioinformatics 23, 1181-1187. https://doi.org/10.1093/bioinformatics/btm097. Nakai, T., 1937a. Species generic Veratri in regione Manshurico-Koreano sponte nascentes. Rep. Inst. Sci. Res. Manchoukuo 325-344. Nakai, T., 1937b. Japanese species of Veratrum. Shokubutsu Kenkyu Zasshi 13(631-645), 701-713. Nie, X., Lv, S., Zhang, Y., et al., 2012. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS One 7, 36869. https://doi.org/10.1371/journal.pone.0036869. Patel, R.K., Jain, M., 2012. NGS QC toolkit:a toolkit for quality control of next generation sequencing data. PLoS One 7, e30619. https://doi.org/10.1371/journal.pone.0030619. Raubeson, L.A., Peery, R., Chumley, T.W., et al., 2007. Comparative chloroplast genomics:analysis including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genom. 8, 174. https://doi.org/10.1186/1471-2164-8-174. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., et al., 2017. DnaSP 6:DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. https://doi.org/10.1093/molbev/msx248. Satake, Y., 1982. Veratrum. In:Satake, Y., Ohwi, J., Kitamura, S., et al. (Eds.), Wild Flowers of Japan, Herbaceous Plants. Heibonsha, Tokyo, pp. 28-29. Sharp, P.M., Wen-Hsiung, L., 1986. Codon usage in regulatory genes in, Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res. 19, 7737-7749. https://doi.org/10.1093/nar/14.19.7737. Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033. Sugiura, M., 1992. The chloroplast genome. Plant Mol. Biol. 19, 149-157. Tamura, M.N., 1998. Melanthiaceae. In:Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants. Flowering Plants:Monocotyledons. Springer, Berlin, pp. 369-380. Tsi, Z.H., 1980. Veratrum. In:Flora Reipublicae Popularis Sinicae (Ed.), Delectis Florae Reipublicae Popularis Sinicae Agenda Academiae Sinicae Edita, vol. 14.Science Press, Beijing, China, pp. 19-30. Turner, M.W., Rossi, M., Campfield, V., et al., 2019. Steroidal alkaloid variation in Veratrum californicum as determined by modern methods of analytical analysis.Fitoterapia 137, 104281. https://doi.org/10.1016/j.fitote.2019.104281. Wang, Q.X., Wang, R.S., Yue, K.L., et al., 2005. Standard of Chinese Herbal Pieces in Yunnan Province. Yunnan Art Publishing Press, Kunming, China, pp. 50-51. Wicke, S., Schneeweiss, G.M., De Pamphilis, C.W., et al., 2011. The evolution of the plastid chromosome in land plants:gene content, gene order, gene function.Plant Mol. Biol. 76, 273-297. https://doi.org/10.1007/s11103-011-9762-4. Wolf, P.G., Roper, J.M., Duffy, A.M., 2010. The evolution of chloroplast genome structure in ferns. Genome 53, 731-738. https://doi.org/10.1139/g10-061. Wu, Y.R., Song, L.R., Hu, L., et al., 1999. Chinese Materia Medica (Zhonghua Bencao), vol. 8. Shanghai Science and Technology Press, Shanghai, China, p. 183. Wyman, S.K., Jansen, R.K., Boore, J.L., 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255. https://doi.org/10.1093/bioinformatics/bth352. Xie, D.F., Yu, H.X., Price, M., et al., 2019. Phylogeny of Chinese Allium species in section Daghestanica and adaptive evolution of Allium (Amaryllidaceae, Allioideae) species revealed by the chloroplast complete genome. Front. Plant Sci. 10, 460. https://doi.org/10.3389/fpls.2019.00460. Yang, J., Yang, L., Yang, Z., et al., 2019. Chloroplast phylogenomic analysis provides insights into the evolution of the largest eukaryotic genome holder, Paris japonica (Melanthiaceae). BMC Plant Biol. 19, 293. https://doi.org/10.1186/s12870-019-1879-7. Yang, Z., Zhao, T., Ma, Q., et al., 2018. Comparative genomics and phylogenetic analysis revealed the chloroplast genome variation and interspecific relationships of Corylus (Betulaceae) species. Front. Plant Sci. 9, 927. https://doi.org/10.3389/fpls.2018.00927. Yin, Z.L., Xie, H., Zhang, J., 2014. A preliminary study of biological characteristics of Veratrum nigrum. Yunnan J. Tradit. Chin. Med. Mater. Med. 4, 54-57. https://doi.org/10.16254/j.cnki.53-1120/r.2014.03.035. Zhang, Y., Du, L., Ao, L., et al., 2016. The complete chloroplast genome sequences of five Epimedium species:lights into phylogenetic and taxonomic analysis. Front.Plant Sci. 7, 306. https://doi.org/10.3389/fpls.2016.00306. Zimmerman, J.H., 1958. A Monograph of Veratrum. University of Wisconsin, Madison, Wisconsin, USA. Ph. D. thesis. Zomlefer, W.B., 1997. The genera of Melanthiaceae in the southeastern United States. Harv. Pap. Bot. 2, 133-177. http://www.jstor.org/stable/41761544. Zomlefer, W.B., Williams, N.H., Whitten, W.M., et al., 2001. Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus:evidence from ITS and trnL-F sequence data. Am. J. Bot. 88, 1657-1669. https://doi.org/10.2307/3558411. Zomlefer, W.B., Whitten, W.M., Williams, N.H., et al., 2003. An overview of Veratrum s.l. (Liliales:Melanthiaceae) and an infrageneric phylogeny based on ITS sequence data. Syst. Bot. 28, 250-269. https://doi.org/10.1043/0363-6445-28.2.250. Zomlefer, W.B., Judd, W., Whitten, M., et al., 2006. A synopsis of Melanthiaceae(Liliales) with focus on character evolution in tribe Melanthieae. Aliso 22, 566-578. https://doi.org/10.5642/aliso.20062201.44. |
[1] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes) [J]. Plant Diversity, 2023, 45(06): 630-684. |
[2] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae) [J]. Plant Diversity, 2023, 45(05): 501-512. |
[3] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
[4] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses [J]. Plant Diversity, 2023, 45(04): 397-408. |
[5] | Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China [J]. Plant Diversity, 2023, 45(03): 284-301. |
[6] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals [J]. Plant Diversity, 2023, 45(03): 347-352. |
[7] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae) [J]. Plant Diversity, 2023, 45(01): 6-19. |
[8] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae) [J]. Plant Diversity, 2023, 45(01): 54-68. |
[9] | Hong-Hu Meng, Can-Yu Zhang, Shook Ling Low, Lang Li, Jian-Yong Shen, Nurainas, Yu Zhang, Pei-Han Huang, Shi-Shun Zhou, Yun-Hong Tan, Jie Li. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae) [J]. Plant Diversity, 2022, 44(06): 552-564. |
[10] | Yi Jin, Hong Qian. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants [J]. Plant Diversity, 2022, 44(04): 335-339. |
[11] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data [J]. Plant Diversity, 2022, 44(03): 300-307. |
[12] | Lei Huang, Fang-Dong Geng, Jing-Jing Fan, Wei Zhai, Cheng Xue, Xiao-Hui Zhang, Yi Ren, Ju-Qing Kang. Evidence for two types of Aquilegia ecalcarata and its implications for adaptation to new environments [J]. Plant Diversity, 2022, 44(02): 153-162. |
[13] | Zheng-Yu Zuo, Ting Zhao, Xin-Yu Du, Yun Xiong, Jin-Mei Lu, De-Zhu Li. A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species [J]. Plant Diversity, 2022, 44(02): 181-190. |
[14] | Zhen-Yu Lv, Ziyoviddin Yusupov, Dai-Gui Zhang, Ya-Zhou Zhang, Xiao-Shuang Zhang, Nan Lin, Komiljon Tojibaev, Hang Sun, Tao Deng. Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China [J]. Plant Diversity, 2022, 44(02): 222-230. |
[15] | Zhi-Jian Yin, Ze-Huan Wang, Norbert Kilian, Ying Liu, Hua Peng, Ming-Xu Zhao. Mojiangia oreophila (Crepidinae, Cichorieae, Asteraceae), a new species and genus from Mojiang County, SW Yunnan, China, and putative successor of the maternal Faberia ancestor [J]. Plant Diversity, 2022, 44(01): 83-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||