Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 321-332.DOI: 10.1016/j.pld.2024.03.009
• Articles • Previous Articles
Jieshi Tanga, Xiaoyan Fana, Richard I. Milneb, Heng Yanga, Wenjing Taoa, Xinran Zhanga, Mengyun Guoa, Jialiang Lia, Kangshan Maoa,c
Received:
2023-11-26
Revised:
2024-03-31
Published:
2024-05-20
Contact:
Jialiang Li,E-mail:lijl459@163.com;Kangshan Mao,E-mail:maokangshan@scu.edu.cn
Supported by:
Jieshi Tang, Xiaoyan Fan, Richard I. Milne, Heng Yang, Wenjing Tao, Xinran Zhang, Mengyun Guo, Jialiang Li, Kangshan Mao. Across two phylogeographic breaks: Quaternary evolutionary history of a mountain aspen (Populus rotundifolia) in the Hengduan Mountains[J]. Plant Diversity, 2024, 46(03): 321-332.
Add to citation manager EndNote|Ris|BibTeX
[1] Abbott, R.J., Smith, L.C., Milne, R.I., et al., 2000. Molecular analysis of plant migration and refugia in the Arctic. Science 289, 1343-1346. [2] Bandelt, H.J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. [3] Beerli, P., Palczewski, M., 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics. 185, 313-326. [4] Butcher, P.A., Skinner, A.K., Gardiner, C.A., 2005. Increased inbreeding and inter-species gene flow in remnant populations of the rare Eucalyptus benthamii. Conserv. Genet. 6, 213-226. [5] Chen, X., Wang, H., Yang, X., et al., 2020. Small-scale alpine topography at low latitudes and high altitudes:refuge areas of the genus Chrysanthemum and its allies. Hortic. Res. 7, 184. [6] Cheng, R., Jiang, N., Xue, D., et al., 2019. Species reassessment congruent with the phylogeographical study of the Biston falcata species group. Syst. Entomol. 44, 886-898. [7] Cheng, S.M., Zeng, W.D., Fan, D.M., et al., 2021. Subtle east-west phylogeographic break of Asteropyrum(Ranunculaceae) in subtropical China and adjacent areas. Diversity 13, 627. [8] Chung, M.Y., Son, S., Herrando-Moraira, S., et al., 2020. Differences between genetic diversity of trees and herbaceous plants in conservation strategies. Conserv. Biol. 34, 1142-1151. [9] Collins, W.D., Bitz, C.M., Blackmon, M.L., et al., 2006. The community climate system model version 3(CCSM3). J. Clim. 19, 2122-2143. [10] Comes, H.P., Kadereit, J.M., 1998. The effect of quaternary climatic changes on plant distribution and evolution. Trends Plant Sci. 3, 432-438. [11] Cornuet, J.M., Santos, F., Beaumont, M.A., et al., 2008. Inferring population history with DIY ABC:a user-friendly approach to approximate Bayesian computation. Bioinformatics 24, 2713-2729. [12] Dakin, E.E., Avise, J.C., 2004. Microsatellite null alleles in parentage analysis. Heredity 93, 504-509. [13] Deng, T., Ding, L., 2015. Paleoaltimetry reconstructions of the Tibetan Plateau:progress and contradictions. Natl. Sci. Rev. 2, 417-437. [14] Dieringer, D., Schlotterer, C., 2003. Microsatellite analyser (MSA):a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167-169. [15] Dupanloup I., Schneider S., Excoffier L., 2002. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571-2581. [16] Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters in individuals using the software STRUCTURE:A simulation study. Mol. Ecol. 14, 2611-2620. [17] Excoffier, L., Lischer, H.E.L., 2010. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564-567. [18] Fan, D.M., Huang, J.H., Hu, H., et al., 2018a. Evolutionary hotspots of seed plants in subtropical China:A comparison with species diversity hotspots of woody seed plants. Front. Genet. 9, 333. [19] Fan, D.M., Yue, J.P., Nie, Z.L., et al., 2013. Phylogeography of Sophora davidii (Leguminosae) across the"Tanaka-Kaiyong Line", an important phytogeographic boundary in southwest China. Mol. Ecol. 22, 42704288. [20] Fan, L.Q., Zheng, H.L., Milne, R.I., et al., 2018b. Strong population bottleneck and repeated demographic expansions of Populus adenopoda(Salicaceae) in subtropical China. Ann. Bot. 121, 665-679. [21] Fang, C.F., Zhao, S.D., Skvortsov, A.K., 1999. Salicaceae Mirbel:1. Populus Linnaeus. In:Wu CY, Raven PH, editors. Flora of China Vol 4:Beijing:Science Press& St. Louis:Missouri Botanical Garden Press, pp. 139-162. [22] Feng, J., Jiang, D., Shang, H., Dong, M., Wang, G., He, X., et al., 2013. Barcoding poplars (Populus, L.) from western China. PLoS ONE 8, e71710. [23] Feng, B., Liu, J.W., Xu, J., et al., 2017. Ecological and physical barriers shape genetic structure of the Alpine porcini (Boletus reticuloceps). Mycorrhiza 27, 261-272. [24] Favre, A., Packert, M., Pauls, S.U., et al., 2014. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. [25] Fick, S.,E., Hijmans, R.J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. [26] Gao, L.M., Moeller, M., Zhang, X.M., et al., 2007. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana(Taxaceae) in China and North Vietnam. Mol. Ecol. 16, 4684-4698. [27] Gavin, D.G., Fitzpatrick, M.C., Gugger, P.F., et al., 2014. Climate refugia:joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37-54. [28] Gong, W., Liu, W., Gu, L., et al., 2016. From glacial refugia to wide distribution range:demographic expansion of Loropetalum chinense(Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest. Org. Divers. Evol. 16, 23-38. [29] Hahn, C.Z., Michalski, S.G., Fischer, M., et al., 2017. Genetic diversity and differentiation follow secondary succession in a multi-species study on woody plants from subtropical China. J. Plant Ecol. 10, 213-221. [30] Ha, K.J., Seo, Y.W., Lee, J.Y., et al., 2018. Linkages between the South and East Asian summer monsoons:a review and revisit. Clim. Dyn. 51, 4207-4227. [31] Hamrick, J.L., 2004. Response of forest trees to global environmental changes. For. Ecol. Manage. 197, 323-335. [32] Hamrick, J.L., Godt, M. J.W., 1996. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. B-Biol. Sci., 351, 1291-1298. [33] Havrdova, A., Douda, J., Krak, K., et al., 2015. Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Mol. Ecol. 24, 4759-4777. [34] Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913. [35] Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87-112. [36] Hickerson, M.J., Carstens, B.C., Cavender-Bares, J., et al., 2010. Phylogeography's past, present, and future:10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291-301. [37] Hubisz, M.J., Falush, D., Stephens, M., et al., 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322-1332. [38] Jiang, D., Feng, J., Dong, M., et al., 2016. Genetic origin and composition of a natural hybrid poplar Populus x jrtyschensis from two distantly related species. BMC Plant Biol. 16, 89-101. [39] Jiang, X.L., An, M., Zheng, S.S., et al., 2017. Geographical isolation and environmental heterogeneity contribute to the spatial genetic patterns of Quercus kerrii(Fagaceae). Heredity 120, 219-233. [40] Kassambara, A., Mundt, F., 2017. Package'factoextra'. Extract and visualize the results of multivariate data analyses. R package version 1.06. http://www.sthda.com/nglish/rpkgs/factoextra. [41] Kling, M.M., Ackerly, D.D., 2021. Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proc. Natl. Acad. Sci. U.S.A. 18, e2017317118. [42] Lei, F.M., Qu, Y.H., Song, G., 2014. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr. Zool. 60, 149-161. [43] Le, S, Josse, J., Husson, F., 2008. FactoMineR:An R package for multi-variate analysis. J Stat. Softw. 25, 1-18. [44] Li, X., Ruhsam, M., Wang, Y., et al., 2023. Wind-dispersed seeds blur phylogeographic breaks:The complex evolutionary history of Populus lasiocarpa around the Sichuan Basin. Plant Divers. 45, 156-168. [45] Li, X.H., Zhu, X.X., Niu, Y., et al., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Syst. Evol. 52, 280-288. [46] Lexer, C., Fay, M., Joseph, J., Nica, M. S., Heinze, B., 2005. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen):the role of ecology and life history in gene introgression. Mol. Ecol. 14, 1045-1057. [47] Li, X.W., Li, J., 1997. The Tanaka-Kaiyong line-An important floristic line for the study of the flora of East Asia. Ann. Mo. Bot. Gard. 84, 888-892. [48] Li, Y., Zhai, S.N., Qiu, Y.X., et al., 2011. Glacial survival east and west of the'Mekong-Salween Divide'in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum(Berberidaceae). Mol. Phylogenet. Evol. 59, 412-424. [49] Librado, P., Rozas, J., 2009. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. [50] Liu, J.Q., Duan, Y.W., Hao, G., et al., 2014. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J. Syst. Evol. 52, 2241-2249. [51] Liu, J.Q., Sun, Y.S., Ge, X.J., et al., 2012. Phylogeographic studies of plants in China:Advances in the past and directions in the future. J. Syst. Evol. 50, 267-275. [52] Lu, Q., Zhu, J., Yu, D., et al., 2016. Genetic and geographical structure of boreal plants in their southern range:phylogeography of Hippuris vulgaris in China. BMC Evol. Biol. 16, 34. [53] Luo, D., Xu, B., Li, Z.M., et al., 2017. The'Ward Line-Mekong-Salween Divide'is an important floristic boundary between the eastern Himalaya and Hengduan Mountains:evidence from the phylogeographical structure of subnival herbs Marmoritis complanatum(Lamiaceae). Bot. J. Linn. Soc. 185, 482-496. [54] Ma, T., Wang, J., Zhou, G., et al., 2013. Genomic insights into salt adaptation in a desert poplar. Nat. Commun. 4, 2797. [55] Macaya-Sanz, D., Heuertz, M., Lopez-De-Heredia, U., et al., 2012. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars. Mol. Ecol. 21, 3593-3609. [56] Manni, F., Guerard, E., Heyer, E., 2004. Geographic patterns of (genetic, morphologic, linguistic) variation:How barriers can be detected by using Monmonier's algorithm. Hum. Biol. 76, 173-190. [57] Mao, K.S., Wang, Y., Liu, J.Q., 2021. Evolutionary origin of species diversity on the Qinghai-Tibet Plateau. J. Syst. Evol. 59, 1142-1158. [58] Muellner-Riehl., 2019. Mountains as evolutionary arenas:patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Front. Plant Sci. 10, 195. [59] Opgenoorth, L., Vendramin, G.G., Mao, K.S., et al., 2010. Tree endurance on the Tibetan Plateau marks the world's highest known tree line of the Last Glacial Maximum. New Phytol. 185, 332-342. [60] Papadopoulou, A., Knowles, L.L., 2016. Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. Proc. Natl. Acad. Sci. U.S.A. 113, 8018-8024. [61] Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5:genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28, 2537-2539. [62] Pearson, R.G., Raxworthy, C.J., Nakamura, M., et al., 2007. Predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102-117. [63] Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231-259. [64] Phillips, S.J., Dudik, M., 2008. Modeling of species distributions with Maxent:new extensions and a comprehensive evaluation. Ecography 31, 161-175. [65] Pons, O., Petit, R.J., 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144, 1237-1245. [66] Porebski, S., Bailey, L.G., Baum, B.R., 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15, 8-15. [67] Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. [68] Qian, L.S., Chen, J.H., Deng, T., et al., 2020. Plant diversity in Yunnan:Current status and future directions. Plant Divers. 42, 281-291. [69] Qiao, H.M., Liu, W.W., Zhang, Y.H., et al., 2019. Genetic admixture accelerates invasion via provisioning rapid adaptive evolution. Mol. Ecol. 28, 4012-4027. [70] Qiu, Y.X., Fu, C.X., Comes, H.P., 2011. Plant molecular phylogeography in China and adjacent regions:Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol. Phylogenet. Evol. 59, 225-244. [71] Somers, K.M., Jackson, D.A., 2022. Putting the Mantel test back together again. Ecology 103, e3780. [72] Song, X.Y., Milne, R.I., Fan, X.Y., et al., 2021. Blow to the Northeast?Intraspecific differentiation of Populus davidiana suggests a north-eastward skew of a phylogeographic break in East Asia. J. Biogeogr. 48, 187-201. [73] Spicer, R.A., 2017. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related?Plant Divers. 39, 233-244. [74] Spicer, R.A., Su, T., Valdes, P.J., et al., 2020. Why'the uplift of the Tibetan Plateau'is a myth. Natl. Sci. Rev. 8, nwaa091. [75] Sun, H., Zhang, J., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161-166. [76] Sutherland, B.G., Belaj, A., Nier, S., et al., 2010. Molecular biodiversity and population structure in common ash (Fraxinus excelsior L.) in Britain:implications for conservation. Mol. Ecol. 19, 2196-2211. [77] Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11 Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022-3027. [78] Tang, Y., Li, C., Wanghe, K., et al., 2019. Convergent evolution misled taxonomy in schizothoracine fishes (Cypriniformes:Cyprinidae). Mol. Phylogenet. Evol. 134, 323-337. [79] Tian, B., Fu, Y., Milne, R.I., et al., 2020. A complex pattern of post-divergence expansion, contraction, introgression, and asynchronous responses to Pleistocene climate changes in two Dipelta sister species from western China. J. Syst. Evol. 58, 247-262. [80] Tuskan, G.A., Gunter, L.E., Yang, Z.K., et al., 2004. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can. J. For. Res. 34, 85-93. [81] Wan, D.S., Feng, J.J., Jiang, D.C., et al., 2016. The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai-Tibet Plateau endemic herbaceous perennial, Anisodus tanguticus(Solanaceae). Ecol. Evol. 6, 1977-1995. [82] Wang, C.S., Dai, J.G., Zhao, X.X., et al., 2014. Outward-growth of the Tibetan Plateau during the Cenozoic:A review. Tectonophysics 621, 1-43. [83] Wang, W.M., 1994. Paleofloristic and paleoclimatic implications of Neogene palynofloras in China. Rev. Palaeobot. Palynol. 82, 239-250. [84] Ward, F.K., 1921. The Mekong-Salween divide as a geographical barrier. Geogr. J. 58, 49-56. [85] Wen, J., Zhang, J.Q., Nie, Z.L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 5, 4. [86] Wu, S.D., Wang, Y., Wang, Z.F., et al., 2022. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. New Phytol. 234, 392-404. [87] Wu, Z.Y., Liu, J., Provan, J., et al., 2018, Testing Darwin's transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecol. Lett. 21, 1515-1529. [88] Ye, J.W., Zhang, Y., Wang, X.J., 2017. Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic Region. Chinese J. Plant Ecol. 41, 1003-1019. [89] Young, N.D., Healy, J., 2003. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinf. 4, 6. [90] Yun, K.S., Lee, J.Y., Ha, K.J., 2014. Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J. Geophys. Res. Atmos. 119, 8104-8116. [91] Yu, H.B., Deane, D.C., Sui, X.H., et al., 2018a. Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecol. Biogeogr. 28, 131-144. [92] Yu, H.B., Favre, A., Sui, X.H., et al., 2018b. Mapping the genetic patterns of plants in the region of the Qinghai-Tibet Plateau:Implications for conservation strategies. Divers. Distrib. 25, 310-324. [93] Zhao, Y.J., Gong, X., 2015. Genetic divergence and phylogeographic history of two closely related species (Leucomeris decora and Nouelia insignis) across the'Tanaka Line'in Southwest China. BMC Evol. Biol. 15, 134. [94] Zhao, Y.P., Fan, G., Yin, P.P., 2019. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10, 4201-4211. [95] Zhao, Y., Zhang, L., 2015. The phylogeographic history of the self-pollinated herb Tacca chantrieri(Dioscoreaceae) in the tropics of mainland Southeast Asia. Biochem. Syst. Ecol. 58, 139-148. [96] Zheng, B., Xu, Q., Shen, Y., 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau:review and speculation. Quat. Int. 97, 93-101. [97] Zheng, H.L., Fan, L.Q., Milne, R.I., et al., 2017. Species delimitation and lineage separation history of a species complex of aspens in China. Front. Plant Sci. 8, 375-387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||