[1] Abbott, R.J., 2003. Sex, sunflowers, and speciation. Science 301, 1189-1190. [2] Berger, B.A., Han, J., Sessa, E.B., et al., 2017. The unexpected depths of genome-skimming data:a case study examining Goodeniaceae floral symmetry genes. Appl. Plant Sci. 5, 1700042. [3] Birky, C.W., 1995. Uniparental inheritance of mitochondrial and chloroplast genes:mechanisms and evolution. Proc. Natl. Acad. Sci. U.S.A. 92, 11331-11338. [4] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [5] Cai, L.M., Xi, Z.X., Lemmon, E.M., et al., 2021. The perfect storm:gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Syst. Biol. 70, 491-507. [6] Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., 2009. TrimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973. [7] Debray, K., Le Paslier, M.C., Berard, A., et al., 2022. Unveiling the patterns of reticulated evolutionary processes with phylogenomics:hybridization and polyploidy in the genus Rosa. Syst. Biol. 71, 547-569. [8] Dong, W.P., Li, E.Z., Liu, Y.L., et al., 2022. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol. 20, 92. [9] Doolittle, W.F., 1999. Phylogenetic classification and the universal tree. Science 284, 2124-2128. [10] Gross, B.L., Rieseberg, L.H., 2005. The ecological genetics of homoploid hybrid speciation. J. Hered. 96, 241-252. [11] Guo, C., Guo, Z.H., Li, D.Z., 2019b. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae:Bambusoideae). Plant Divers. 41, 213-219. [12] Guo, C., Ma, P.F., Yang, G.Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. [13] Guo, C., Luo, Y., Gao, L.M., et al., 2023. Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65, 299-323. [14] Guo, Z.H., Ma, P.F., Yang, G.Q., et al., 2019a. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 12, 1353-1365. [15] Hu, Y.N., Zhao, L., Buggs, R.J.A., et al., 2019. Population structure of Betula albosinensis and Betula platyphylla:evidence for hybridization and a cryptic lineage. Ann. Bot. 123, 1179-1189. [16] Janzen, D.H., 1976. Why bamboos wait so long to flower. Annu. Rev. Ecol. Systemat. 7, 347-391. [17] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [18] Johnson, M.G., Gardner, E.M., Liu, Y., et al., 2016. HybPiper:extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4, 1600016. [19] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [20] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [21] Linder, C.R., Rieseberg, L.H., 2004. Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91, 1700-1708. [22] Liu, B.B., Ma, Z.Y., Ren, C., et al., 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics:a case study in Vitaceae. J. Systemat. Evol. 5, 1124-1138. [23] Liu, J.X., Zhou, M.Y., Yang, G.Q., et al., 2020. ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae:Bambusoideae). Mol. Phylogenet. Evol. 146, 106758. [24] Liu, L.X., Deng, P., Chen, M.Z., et al., 2023. Systematics of Mukdenia and Oresitrophe(Saxifragaceae):insights from genome skimming data. J. Systemat. Evol. 61, 99-114. [25] Low, L.W., Rajaraman, S., Tomlin, C.M., et al., 2022. Genomic insights into rapid speciation within the world's largest tree genus Syzygium. Nat. Commun. 13, 5031. [26] Lv, S.Y., Ye, X.Y., Li, Z.H., et al., 2023. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia. Plant Divers. 45, 147-155. [27] Ma, J.X., Sun, P.C., Wang, D.D., et al., 2021. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat. Commun. 12, 6929. [28] Ma, P.F., Liu, Y.L., Guo, C., et al., 2023. Subgenome Dominance Included Diversification in the World's Largest Grasses.(submitted for publication). [29] Mallet, J., Besansky, N., Hahn, M.W., 2016. How reticulated are species?Bioessays 38, 140-149. [30] McKenna, A., Hanna, M., Banks, E., et al., 2010. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303. [31] Morales-Briones, D.F., Kadereit, G., Tefarikis, D.T., et al., 2021. Disentangling sources of gene tree discordance in phylogenomic data sets:testing ancient hybridization in Amaranthaceae s.l. Syst. Biol. 70, 219-235. [32] Nguyen, L.T., Schmidt, H.A., Haeseler, A.V., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [33] Nitta, J.H.; Ebihara, A., Ito, M., 2011. Reticulate evolution in the Crepidomanes minutum species complex (Hymenophyllaceae). Am. J. Bot. 98, 1782-1800. [34] Parisod, C., Badaeva, E.D., 2020. Chromosome restructuring among hybridizing wild wheats. New Phytol. 226, 1263-1273. [35] Pease, J.B., Brown, J.W., Walker, J.F., et al., 2018. Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. Am. J. Bot. 105, 385-403. [36] Pennisi, E., 2016. Shaking up the tree of life. Science 354, 817-821. [37] Pickrell, J.K., Pritchard, J.K., 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967. [38] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA:a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. [39] Ramsey, J., Schemske, D.W., 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Systemat. 33, 589-639. [40] Rieseberg, L.H., Soltis, D.E., 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plants 5, 65-84. [41] Smith, S.A., Moore, M.J., Brown, J.W., et al., 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150. [42] Solís-Lemus, C., Bastide, P., Ané, C., 2017. Phylonetworks:a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292-3298. [43] Soltis, P.S., Soltis, D.E., 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561-588. [44] Soreng, R.J., Peterson, P.M., Fernando, O.Z., et al., 2022. A worldwide phylogenetic classification of the Poaceae (Gramineae) III:an update. J. Systemat. Evol. 60, 476-521. [45] Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. [46] Stewart, N.C., Halfhill, M.D., Warwick, S.I., 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4, 806-817. [47] Stull, G.W., Pham, K.K., Soltis, P.S., et al., 2023. Deep reticulation:the long legacy of hybridization in vascular plant evolution. Plant J. doi:https://doi.org/10.1111/tpj.16142. [48] Triplett, J.K., 2008. Phyloenetic Relationships Among the Temperate Bamboos (Poaceae:Bambusoideae) with an Emphasis on Arundinaria and Allies. Lowa, United States:Lowa State University. [49] Triplett, J.K., Clark, L.G., 2010. Phylogeny of the temperate bamboos (Poaceae:Bambusoideae:Bambuseae) with an emphasis on Arundinaria and allies. Syst. Bot. 35, 102-120. [50] Triplett, J.K., Clark, L.G., 2021. Hybridization in the temperate bamboos (Poaceae:Bambusoideae:Arundinarieae):a phylogenetic study using AFLPs and cpDNA sequence data. Syst. Bot. 46, 48-69. [51] Triplett, J.K., Clark, L.G., Fisher, L.G., et al., 2014. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol. 204, 66-73. [52] Vargas, O.M., Heuertz, M., Smith, S.A., et al., 2019. Target sequence capture in the Brazil nut family (Lecythidaceae):marker selection and in silico capture from genome skimming data. Mol. Phylogenet. Evol. 135, 98-104. [53] Walker, J.F., Walker-Hale, N., Vargas, O.M., et al., 2019. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 7, e7747. [54] Wang, H.X., Morales-Briones, D.F., Moore, M.J., et al., 2021a. A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. J. Systemat. Evol. 59, 897-914. [55] Wang, X.T., Chen, L.Y., Ma, J.X., 2019. Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biol. 20, 22-36. [56] Wang, Z.F., Jiang, Y.Z., Bi, H., et al., 2021b. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208-222. [57] Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [58] Yang, F.M., Ge, J., Guo, Y.J., et al., 2023. Deciphering complex reticulate evolution of Asian Buddleja(Scrophulariaceae):insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. Ann. Bot. doi:https://doi.org/10.1093/aob/mcad022. [59] Yang, H.M., Zhang, Y.X., Yang, J.B., et al., 2013. The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae:Bambusoideae) inferred from four plastid and two nuclear markers. Mol. Phylogenet. Evol. 68, 340-356. [60] Ye, X.Y., Ma, P.F., Guo, C., et al., 2021. Phylogenomics of Fargesia and Yushania reveals a history of reticulate evolution. J. Systemat. Evol. 59, 1183-1197. [61] Yu, J.R., Niu, Y.T., You, Y.C., et al., 2023. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus(Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. New Phytol. 238, 888-903. [62] Zhang, C., Rabiee, M., Sayyari, E., et al., 2018. ASTRAL-III:polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19, 153. [63] Zhang, N., Wen, J., Zimmer, E.A., 2015. Congruent deep relationships in the grape family (Vitaceae) based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. PLoS One 10, e0144701. [64] Zhang, X.T., Chen, S., Shi, L.Q., et al., 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 53, 1250-1259. [65] Zhang, Y.X., Zeng, C.X., Li, D.Z., 2012. Complex evolution in Arundinarieae (Poaceae:Bambusoideae):incongruence between plastid and nuclear GBSSI gene phylogenies. Mol. Phylogenet. Evol. 63, 777-797. [66] Zhao, X.B., Fu, X.D., Yin, C.B., et al., 2021. Wheat speciation and adaptation:perspectives from reticulate evolution. aBIOTECH 2, 386-402. [67] Zou, T.T., Kuang, W.M., Yin, T.T., et al., 2022. Uncovering the enigmatic evolution of bears in greater depth:the hybrid origin of the Asiatic black bear. Proc. Natl. Acad. Sci. U.S.A. 119, e2120307119. |