An, H.R., Kim, Y.J., Kwon, O.K., et al., 2017. High temperature promotes growth and flowering in Sophrolaeliocattleya. Hortic. Environ. Biotechnol. 58, 268-273. Assmann, S.M., Zeiger, E., 1985. Stomatal responses to CO2 in Paphiopedilum and Phragmipediumerole of the guard cell chloroplast. Plant Physiol. 77, 461-464. Averyanov, L., Cribb, P., Ke Loc, P., et al., 2003. Slipper Orchids of Vietnam. Royal Botanical Gardens, Kew. Bacelar, E.A., Correia, C.M., Pereira, J.M.M., et al., 2004. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol. 24, 233-239. Bleho, B.I., Borkowsky, C.L., Grantham, M.A., et al., 2021. A 20 y analysis of weather and management effects on a small white lady's-slipper (Cypripedium candidum) population in Manitoba. Am. Midl. Nat. 185, 32-48. Cassola, F., Silva, M.H.R., Borghi, A.A., et al., 2019. Morphoanatomical characteristics, chemical profiles, and antioxidant activity of three species of Justicia L. (Acanthaceae) under different growth conditions. Ind. Crop. Prod. 131, 257-265. Chen, M.J., Zhu, X.F., Zhang, Y., et al., 2020. Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Sci. Rep. 10, 6696. CITES, 2012. Convention on international trade in endangered species of wild fauna and flora, Appendices I, II and III. http://www.cites.org. Cribb, P., 1998. The Genus Paphiopedilum, second ed. Natural History Publications, Kew, UK. Kota Kinabalu (Borneo) in association with Royal Botanic Gardens. Cruz, Y.D.C., Scarpa, A.L.M., Pereira, M.P., et al., 2019. Growth of Typha domingensis as related to leaf physiological and anatomical modifications under drought conditions. Acta Physiol. Plant. 41, 64. De Boer, H.J., Price, C.A., Wagner-Cremer, F., et al., 2016. Optimal allocation of leaf epidermal area for gas exchange. New Phytol. 210, 1219-1228. Ferris, R., Nijs, I., Behaeghe, T., et al., 1996. Elevated CO2 and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer.Ann. Bot. 78, 489-497. Flexas, J., Barbour, M.M., Brendel, O., et al., 2012. Mesophyll diffusion conductance to CO2:an unappreciated central player in photosynthesis. Plant Sci. 193, 70-84. Franks, P.J., Beerling, D.J., 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. U. S. A. 106, 10343-10347. Gago, J., Daloso, D.M., Figueroa, C.M., et al., 2016. Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism:a multispecies meta-analysis approach. Plant Physiol. 171, 265-279. Ghalambor, C.K., Mckay, J.K., Carroll, S.P., et al., 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394-407. Grassi, G., Magnani, F., 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28, 834-849. Greer, D.H., Weston, C., 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 37, 206-214. Greer, D.H., Weedon, M.M., 2011. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ. 35, 1050-1064. Guan, Z.J., Zhang, S.B., Guan, K.Y., et al., 2011. Leaf anatomical structures of Paphiopedilum and Cypripedium and their adaptive significance. J. Plant Res. 124, 289-298. Habermann, E., San Martin, J.A.B., Contin, D.R., et al., 2019. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum. PLoS One 14, e0212506. Iersel, M.W.V., 2003. Short-term temperature change affects the carbon exchange characteristics and growth of four bedding plant species. J. Am. Soc. Hortic. Sci. 128, 100-106. Jin, B., Wang, L., Wang, J., et al., 2011. The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana.BMC Plant Biol. 11, 35. Lee, N., Lin, G.M., 1984. Effect of temperature on growth and flowering of Phalaenopsis white hybrid. J. Chin. Soc. Hortic. Sci. 30, 223-231. Liu, Z.J., Chen, S.C., Chen, L.J., et al., 2009. The Genus Paphiopedilum in China. Science Press, Beijing, pp. 4-12. Long, S.P., Zhu, X.G., Naidu, S.L., et al., 2006. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315-330. Marchin, R.M., Dunn, R.R., Hoffmann, W.A., 2014. Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor. Oecologia 176, 1161-1172. Matesanz, S., Gianoli, E., Valladares, F., 2010. Global change and the evolution of phenotypic plasticity in plants. Ann. N. Y. Acad. Sci. 1206, 35-55. McLean, E.H., Prober, S.M., Stock, W.D., et al., 2014. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant Cell Environ. 37, 1440-1451. Muir, C.D., Hangarter, R.P., Moyle, L.C., et al., 2014. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant Cell Environ. 37, 1415-1426. Newton, L.A., Runkle, E.S., 2009. High-temperature inhibition of flowering of Phalaenopsis and Doritaenopsis orchid. Hortscience 44, 1271-1276. Pollet, B., Steppe, K., Vanlabeke, M.C., et al., 2009. Diurnal cycle of chlorophyll fluorescence in Phalaenopsis. Photosynthetica 7, 309-312. Poulos, H.M., Goodale, U.M., Berlyn, G.P., 2007. Drought response of two Mexican oak species, Quercus laceyi and Q. sideroxyla (Fagaceae), in relation to elevational position. Am. J. Bot. 94, 809-818. Richardson, A.D., Ashton, P.M.S., Berlyn, G.P., et al., 2001. Within-crown foliar plasticity of western hemlock, Tsuga heterophylla, in relation to stand age. Ann.Bot. 88, 1007-1015. Richards, C.L., Bossdorf, O., Muth, N.Z., et al., 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981-993. Sekiya, N., Yano, K., 2008. Stomatal density of cowpea correlates with carbon isotope discrimination in different phosphorus, water and CO2 environments.New Phytol. 179, 799-807. Soudzilovskaia, N.A., Elumeeva, T.G., Onipchenko, V.G., et al., 2013. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc. Natl. Acad. Sci. U. S. A. 110, 18180-18184. Sultan, S.E., 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 537-542. Toscano, S., Ferrante, A., Tribulato, A., et al., 2018. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability.Plant Physiol. Biochem. 127, 380-392. Valladares, F., Martinez-Ferri, E., Balaguer, L., et al., 2000. Low leaf-level response to light and nutrients in Mediterranean evergreen oaks:a conservative resourceuse strategy? New Phytol. 148, 79-91. Velikova, V., Arena, C., Izzo, L.G., et al., 2020. Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats. Int. J.Mol. Sci. 21, 3912. Wang, R.Z., Huang, W.W., Chen, L., et al., 2011. Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in northeast China. PLoS One 6, e26209. Wise, R.R., Olson, A.J., Schrader, S.M., et al., 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 27, 717-724. Wu, G.L., Liu, H., Hua, L., et al., 2018. Differential responses of stomata and photosynthesis to elevated temperature in two co-occurring subtropical forest tree species. Front. Plant Sci. 9, 467. Wu, G.Y., Hui, J.A., Wang, Z.H., et al., 2014. Photosynthetic characteristics of four wild Dendrobium species in China. Hortscience 49, 1023-1027. Xu, Z.Z., Zhou, G.S., 2008. Response of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317-3325. Yang, Y., Wang, G.X., Klanderud, K., et al., 2011. Responses in leaf functional traits and resource allocation of a dominant alpine sedge (Kobresia pygmaea) to climate warming in the Qinghai-Tibetan Plateau permafrost region. Plant Soil 349, 377-387. Yang, Y.J., Chang, W., Huang, W., et al., 2017. The effects of chilling-light stress on photosystem I and II in three Paphiopedilum species. Bot. Stud. 58, 53. Yang, Z.H., Huang, W., Yang, Q.Y., et al., 2018. Anatomical and diffusional determinants inside leaves explain the difference in photosynthetic capacity between Cypripedium and Paphiopedilum, Orchidaceae. Photosynth. Res. 136, 315-328. Zhang, F.P., Yang, Y.J., Yang, Q.Y., et al., 2017. Floral mass per area and water maintenance traits are correlated with floral longevity in Paphiopedilum (Orchidaceae). Front. Plant Sci. 8, 501. Zhang, S.B., Guan, Z.J., Chang, W., et al., 2011. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy. Physiol. Plantarum 142, 118-127. Zhang, S.B., Guan, Z.J., Sun, M., et al., 2012. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PLoS One 7, e40080. Zheng, Y.P., Xu, M., Shen, R.C., et al., 2013. Effects of artificial warming on the structural, physiological, and biochemical changes of maize (Zea mays L.) leaves in northern China. Acta Physiol. Plant. 35, 2891-2904. Zhou, Y.M., Deng, J.F., Tai, Z.J., et al., 2019. Leaf anatomy, morphology and photosynthesis of three tundra shrubs after 7-year experimental warming on Changbai Mountain. Plants 8, 271. |