Abdallah, I.B., Tlili, N., Martinez-Force, E., Rubio, A.G., Perez-Camino, M.C., Albouchi, A., Boukhchina, S. 2015. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 173, 972-978. https://doi.org/10.1016/j.foodchem.2014.10.095 Aradhya, M.K., Potter, D., Gao, F., Simon, C.J. 2007. Molecular phylogeny of Juglans (Juglandaceae): a biogeographic perspective. Tree Genet. Genomes 3, 363-378. https://doi.org/10.1007/s11295-006-0078-5 Aune, D., Keum, N., Giovannucci, E., Fadnes, L.T., Boffetta, P., Greenwood, D.C., Tonstad, S., Vatten, L.J., Riboli, E., Norat, T. 2016. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and causespecific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 14, 207. https://doi.org/10.1186/s12916-016-0730-3 Balapanov, I., Suprun, I., Stepanov, I., Tokmakov, S., Lugovskoy, A. 2019. Comparative analysis Crimean, Moldavian and Kuban Persian walnut collections genetic variability by SSR-markers. Sci. Hortic. 253, 322-326. https://doi.org/10.1016/j.scienta.2019.04.014 Bernard, A., Barreneche, T., Lheureux, F., Dirlewanger, E. 2018. Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers. PloS One 13, e0208021. https://doi.org/10.1371/journal.pone.0208021 Bouabdallah, I., Bouali, I., Martinez-Force, E., Albouchi, A., Perez Camino, M.C., Boukhchina, S. 2014. Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia. Nat. Prod. Res. 28, 1826-1833. https://doi.org/10.1080/14786419.2014.950573 Broeck, A.V., Cox, K., Melosik, I., Maes, B., Smets, K. 2018. Genetic diversity loss and homogenization in urban trees: the case of Tilia?×europaea in Belgium and The Netherlands. Biodivers. Conserv. 27, 3777-3792 Chai, X., Dong, R., Liu, W., Wang, Y., Liu, Z. 2017. Optimizing sample size to assess the genetic diversity in common vetch (Vicia sativa L.) populations using Start Codon Targeted (SCoT) markers. Molecules 22, 567. https://doi.org/10.3390/molecules22040567 Chen, F., Chen, J., Wang, Z., Zhang, J., Li, X., Lin, M., Song, Y., Zhang, L. 2019. Genomics: cracking the mysteries of walnuts. J. Genet. 98, 33. https://doi.org/10.1007/s12041-019-1084-3 Dang, D., Yue, M., Zhang, M., Zhao, G., Zhao, P. 2019. Gene introgression among closely related species in sympatric populations: a case study of three walnut (Juglans) species. Forests 10, 965. https://doi.org/10.3390/f10110965 Dangl, G.S. 2005. Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J. Am. Soc. Hortic. Sci. 130, 348-354. https://doi.org/10.21273/JASHS.130.3.348 Dong, W., Xu, C., Li, W., Xie, X., Lu, Y., Liu, Y., Jin, X., Suo, Z. 2017. Phylogenetic resolution in Juglans based on complete chloroplast genomes and nuclear DNA sequences. Front. Plant Sci. 8, 1148. https://doi.org/10.3389/fpls.2017.01148 Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bulletin 19, 11-15. https://worldveg.tind.io/record/33886/ Dutra, W., Guerra, Y., Ramos, J., Fernandes, P., Silva, C., Bertioli, D., Leal-Bertioli, S., Santos, R. 2018. Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield. PloS One 13, e0198776. https://doi.org/10.1371/journal.pone.0198776 Earl, D.A., vonHoldt, B.M. 2012. Structure HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7 Ebrahimi, A., Mathur, S., Lawson, S.S., LaBonte, N.R., Lorch, A., Coggeshall, M.V., Woeste, K.E. 2019. Microsatellite borders and micro-sequence conservation in Juglans. Sci. Rep. 9, 3748. https://doi.org/10.1038/s41598-019-39793-z Ebrahimi, A., Zarei, A., McKenna, J.R., Bujdoso, G., Woeste, K.E. 2017. Genetic diversity of Persian walnut (Juglans regia) in the cold-temperate zone of the United States and Europe. Sci. Hortic. 220, 36-41. https://doi.org/10.1016/j.scienta.2017.03.030 Excoffier, L., Laval, G., Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47-50. https://doi.org/10.1177/117693430500100003 FAOSTAT 2019. FAOSTAT: FAO Statistics Division 2020. https://www.fao.org/faostat/en/#data/QC, Accessed 14 September 2020 Feng, X., Zhou, H., Zulfiqar, S., Luo, X., Hu, Y., Feng, L., Malvolti, M.E., Woeste, K., Zhao, P. 2018. The phytogeographic history of common walnut in China. Front. Plant Sci. 9, 1399. https://doi.org/10.3389/fpls.2018.01399 Freeman, C.C., Reveal, J.L. 2005. Flora of North America. Missouri Botanical Garden, St. Louis Gharibzahedi, S.M.T., Mousavi, S.M., Hamedi, M., Khodaiyan, F. 2012. Comparative analysis of new Persian walnut cultivars: nut/kernel geometrical, gravimetrical, frictional and mechanical attributes and kernel chemical composition. Sci. Hortic. 135, 202-209. 10.1016/j.scienta.2011.11.030 Gunn, B.F., Aradhya, M., Salick, J.M., Miller, A.J., Yongping, Y., Lin, L., Xian, H. 2010. Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am. J. Bot. 97, 660-671. https://doi.org/10.3732/ajb.0900114 Gupta, A., Behl, T., Panichayupakaranan, P. 2019. A review of phytochemistry and pharmacology profile of Juglans regia. Obes. Med. 16, 100142. https://doi.org/10.1016/j.obmed.2019.100142 Gyawali, R., Ibrahim, S.A. 2014. Natural products as antimicrobial agents. Food Contr. 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047 Hamadeh, B., Chalak, L., d'Eeckenbrugge, G.C., Benoit, L., Joly, H.I. 2018. Evolution of almond genetic diversity and farmer practices in Lebanon: impacts of the diffusion of a graft-propagated cultivar in a traditional system based on seed-propagation. BMC Plant Biol. 18, 155. https://doi.org/10.1186/s12870-018-1372-8 Hassani, D., Sarikhani, S., Dastjerdi, R., Mahmoudi, R., Soleimani, A., Vahdati, K. 2019. Situation and recent trends on cultivation and breeding of Persian walnut in Iran. Sci. Hortic. 270, 109369. https://doi.org/10.1016/j.scienta.2020.109369 He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Fritz, A., Hucl, P., Wiebe, K., Knox, R., Cuthbert, R., Pozniak, C., Akhunova, A., Morrell, P.L., Davies, J.P., Webb, S.R., Spangenberg, G., Hayes, B., Daetwyler, H., Tibbits, J., Hayden, M., Akhunov, E. 2019. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896-904. https://doi.org/10.1038/s41588-019-0382-2 Henry, R.J. 2019. Innovations in plant genetics adapting agriculture to climate change. Curr. Opin. Plant Biol. 13, 1-6. https://doi.org/10.1016/j.pbi.2019.11.004 Hoban, S., Romero-Severson, J. 2011. Homonymy, synonymy and hybrid misassignments in butternut (Juglans cinerea) and Japanese walnut (Juglans ailantifolia) nut cultivars. Genet. Resour. Crop Evol. 59, 1397-1405. https://doi.org/10.1007/s10722-011-9767-5 Igwe, D.O., Afiukwa, C.A., Ubi, B.E., Ogbu, K.I., Ojuederie, O.B., Ude, G.N. 2017. Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genet. 18, 98. https://doi.org/10.1186/s12863-017-0567-6 Ingvarsson, P.K., Dahlberg, H. 2019. The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees. Scand. J. For. Res. 34, 370-379. https://doi.org/10.1080/02827581.2018.1469665 Janzen, G.M., Wang, L., Hufford, M.B. 2018. The extent of adaptive wild introgression in crops. New Phytol. 221, 1279-1288. https://doi.org/10.1111/nph.15457 Jia, Y., Milne, R., Zhu, J., Gao, L., Zhu, G., Zhao, G., Liu, J., Li, Z. 2020. Evolutionary legacy of a forest plantation tree species (Pinus armandii): implications for widespread afforestation. Evol. Appl. 13, 2646-2662. https://doi.org/10.1111/eva.13064 Khadivi, A., Montazeran, A., Rezaei, M., Ebrahimi, A. 2019. The pomological characterization of walnut (Juglans regia L.) to select the superior genotypes - an opportunity for genetic improvement. Sci. Hortic. 248, 29-33. https://doi.org/10.1016/j.scienta.2018.12.054 Lasso, E. 2008. The importance of setting the right genetic distance threshold for identification of clones using amplified fragment length polymorphism: a case study with five species in the tropical plant genus Piper. Mol. Ecol. Resour. 8, 74-82 Li, L. 2017. Growth and Propagation Characteristics of Juglans Interspecific Hybrid Varieties. Chinese Academy of Forestry, Haidian Li, X., He, P., Zhu, T., Pan, Z. 2017. Characterization of a new pathogen in walnut twig blight. Microbiol. China 44, 1339-1348. https://doi.org/10.13344/j.microbiol.china.160946 Liu, J., Gao, L. 2011. Comparative analysis of three different methods of total DNA extraction used in Taxus. Guihaia 31, 244-249. https://www.cabdirect.org/cabdirect/abstract/20113266180 Liu, B., Liang, J., Zhao, D., Wang, K., Jia, M., Wang, J. 2020. Morphological and compositional analysis of two walnut (Juglans regia L.) cultivars growing in China. Plant Foods Hum. Nutr. 75, 116-123. https://doi.org/10.1007/s11130-019-00794-y Liu, S., Liu, H., Wu, A., Hou, Y., An, Y., Wei, C. 2017. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Mol. Breed. 37, 93. https://doi.org/10.1007/s11032-017-0692-y Liu, J., Möller, M., Provan, J., Gao, L.M., Poudel, R.C., Li, D.Z. 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 199, 1093-1108. https://doi.org/10.1111/nph.12336 Lorenzo, S., Giovanna, S., Michelangelo, M., Cristian, B., Alessandra, L., Matteo, B., Adriano, M. 2020. Cocoa beans and liquor fingerprinting: a real case involving SSR profiling of CCN51 and “Nacional” varieties. Food Contr. 118, 107392. https://doi.org/10.1016/j.foodcont.2020.107392 Lu, A., Stone, D., Grauke, L. 1999. Juglandaceae. In: Wu, Z.Y., Peter, R.H. (Eds.), Flora of China. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, Missouri, pp 277-285 Manning, W. 1978. The classification within the Juglandaceae. Ann. Mo. Bot. Gard. 65, 1058-1087. https://doi.org/10.2307/2398782 Martínez, M.L., Mattea, M.A., Maestri, D.M. 2006. Varietal and crop year effects on lipid composition of walnut (Juglans regia) genotypes. J. Am. Oil Chem. Soc. 83, 791-796. https://doi.org/10.1007/s11746-006-5016-z Mattioni, C., Cherubini, M., Micheli, E., Villani, F., Bucci, G. 2008. Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet. Genomes 4, 563-574. https://doi.org/10.1007/s11295-008-0132-6 McGranahan, G., Leslie, C. 2009. Breeding walnuts (Juglans regia). In: Priyadarshan, P.M., Jain, S.M. (Eds.), Breeding Plantation Tree Crops: Temperate Species. Springer, New York, pp 249-273. https://doi.org/10.1007/978-0-387-71203-1_8 McKey, D., Elias, M., Pujol, B., Duputie, A. 2010. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 186, 318-332. https://doi.org/10.1111/j.1469-8137.2010.03210.x Meirmans, P.G. 2020. GENODIVE version 3.0: easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126-1131. https://doi.org/10.1111/1755-0998.13145 Miller, A., Gross, B. 2011. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98, 1389-1414. https://doi.org/10.3732/ajb.1000522 Miller, A.J., Schaal, B.A. 2006. Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Mol. Ecol. 15, 1467-1480. https://doi.org/10.1111/j.1365-294X.2006.02834.x Nagy, S., Poczai, P., Cernak, I., Gorji, A.M., Hegedus, G., Taller, J., 2012. PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem. Genet. 50, 670–672. https://doi.org/10.1007/s10528-012-9509-1 Ojeda-Amador, R.M., Salvador, M.D., Gomez-Alonso, S., Fregapane, G. 2018. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 108, 396-404. https://doi.org/10.1016/j.foodres.2018.03.066 Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x Pei, D., Lu, X. Z. 2011. Walnut Germplasm Resources in China. China Forestry Publishing House: Beijing, China Pembleton, L.W., Cogan, N.O.I., Forster, J.W. 2013. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946-952. https://doi.org/10.1111/1755-0998.12129 Pritchard, J.K., Stephens, M., Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. https://www.genetics.org/content/155/2/945 Rabadán, A., Álvarez-Ortí, M., Gómez, R., Pardo-Gimenez, A., Pardo, J.E. 2017. Suitability of Spanish almond cultivars for the industrial production of almond oil and defatted flour. Sci. Hortic. 225, 539-546. https://doi.org/10.1016/j.scienta.2017.07.051 Rabadán, A., Pardo, J. E., Pardo-Giménez, A., Alvarez-Orti, M. 2018. Effect of genotype and crop year on the nutritional value of walnut virgin oil and defatted flour. Sci. Total Environ. 634, 1092-1099. https://doi.org/10.1016/j.scitotenv.2018.04.090 Rambaut, A. 2018. FigTree v1.4.4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 15 July, 2020 Ros, E., Izquierdo-Pulido, M., Sala-Vila, A. 2018. Beneficial effects of walnut consumption on human health: role of micronutrients. Curr. Opin. Clin. Nutr. Metab. Care 21, 498-504. https://doi.org/10.1097/MCO.0000000000000508 Seybold, S.J., Klingeman III, W.E., Hishinuma, S.M., Coleman, T.W., Graves, A.D. 2019. Status and impact of walnut twig beetle in urban forest, orchard, and native forest ecosystems. J. Fr. 117, 152-163. https://doi.org/10.1093/jofore/fvy081 Stoeckel, S., Grange, J., Fernandez-Manjarres, J., Bilger, I., Frascaria-Lacoste, N., Mariette, S. 2006. Heterozygote excess in a self-incompatible and partially clonal forest tree species - Prunus avium L. Mol. Ecol. 15, 2109-2118. https://doi.org/10.1111/j.1365-294x.2006.02926.x Tian, J., Wu, Y., Wang, Y., Han, F. 2009. Development and prospects of the walnut industry in China. ISHS Acta Hortic. 861, VI International Walnut Symposium. https://doi.org/10.17660/ActaHortic.2010.861.2 Torokeldiev, N., Ziehe, M., Gailing, O., Finkeldey, R. 2018. Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers. Tree Genet. Genomes 15, 5. https://doi.org/10.1007/s11295-018-1311-8 Vischi, M., Chiabà, C., Raranciuc, S., Poggetti, L., Messina, R., Ermacora, P., Cipriani, G., Paffetti, D., Vettori, C., Testolin, R. 2017. Genetic diversity of walnut (Juglans Regia L.) in the eastern Italian alps. Forests 8, 81. https://doi.org/10.3390/f8030081 Wambulwa, M., Meegahakumbura, M., Chalo, R., Kamunya, S., Muchugi, A., Xu, J.C., Liu, J., Li, D.Z., Gao, L.M. 2016. Nuclear microsatellites reveal the genetic architecture and breeding history of tea germplasm of East Africa. Tree Genet. Genomes 12, 11. https://doi.org/10.1007/s11295-015-0963-x Wang, H., Pan, G., Ma, Q., Zhang, J., Pei D. 2015. The genetic diversity and introgression of Juglans regia and Juglans sigillata in Tibet as revealed by SSR markers. Tree Genet. Genomes 11, 804. https://doi.org/10.1007/s11295-014-0804-3 Wang, H., Pei, D. 2008. Genetic diversity and structure of walnut populations in central and southwestern China revealed by microsatellite markers. J. Am. Soc. Hortic. Sci. 133, 197-203. https://doi.org/10.21273/JASHS.133.2.197 Wu, G.L., Meng, H.J., Hao, Y.Y., Liu, Q.L., Wang, D., Tian, J.B. 2009. Thirty years of breeding walnut in China. ISHS Acta Hortic. 861, VI International Walnut Symposium. https://doi.org/10.17660/ActaHortic.2010.861.14 Xu, Z.C., Jin, Y.C., Milne, R.I., Xiahou, Z.Y., Qin, H.T., Ye, L.J., Gao, L.M., Liu, J., Li, D.Z. 2020. Development of 32 novel microsatellite loci in Juglans sigillata using genomic data. Appl. Plant Sci. 8, e11328. https://doi.org/10.1002/aps3.11328 Yuan, X.Y., Sun, Y.W., Bai, X.R., Dang, M., Feng, X.J., Zulfiqar, S., Zhao, P. 2018. Population structure, genetic diversity, and gene introgression of two closely related walnuts (Juglans regia and J. sigillata) in southwestern China revealed by EST-SSR markers. Forests 9, 646. https://doi.org/10.3390/f9100646 Zhang, F., Batley, J. 2019. Exploring the application of wild species for crop improvement in a changing climate. Curr. Opin. Plant Biol. 13, 1-5. https://doi.org/10.1016/j.pbi.2019.12.013 |