[1] Ackerly, D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. U.S.A. 106, 19699-19706. [2] Blackburn, T.M., Pysek, P., Bacher, S., et al., 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333-339. [3] Cadotte, M.W., Campbell, S.E., Li, S.P., et al., 2018. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 69, 661-684. [4] Cavender-Bares, J., Kozak, K.H., Fine, P.V.A., et al., 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693-715. [5] Divisek, J., Chytry, M., Beckage, B., et al., 2018. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commu. 9, 4631. [6] Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11549-11555. [7] Essl, F., Dawson, W., Kreft, H., et al., 2019. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051. [8] Fristoe, T.S., Milan, C., Dawson, W., et al., 2021. Dimensions of invasiveness: links between abundance, geographic range size and habitat breadth in Europe’s alien and native floras. Proc. Natl. Acad. Sci. U.S.A. 118, e2021173118. [9] Gallien, L., Thornhill, A.H., Zurell, D., et al., 2019. Global predictors of alien plant establishment success: combining niche and trait proxies. Proc. R. Soc. B-Biol. Sci. 286, 20182477. [10] Hao, Q., Ma, J.-S. Invasive alien plants in China: An update. Plant Divers. https://doi.org/10.1016/j.pld.2022.11.004. [11] Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., et al., (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecol. Lett. 14, 741-748. [12] Jin, Y., Qian, H., 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. [13] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [14] Krishna, M., Winternitz, J., Garkoti, S.C., et al., 2021. Functional leaf traits indicate phylogenetic signals in forests across an elevational gradient in the central Himalaya. J. Plant Res. 134, 753-764. [15] Lambdon, P.W., 2008. Is invasiveness a legacy of evolution? Phylogenetic patterns in the alien flora of Mediterranean islands. J. Ecol. 96, 46-57. [16] Lambertini, M., Leape, J., Marton-Lefevre, J., et al., 2011. Invasives: a major conservation threat. Science 333, 404-405. [17] Lin, Q., Xiao, C., Ma, J., 2022. A dataset on catalogue of alien plants in China. Biodivers. Sci. 30, 22127. [18] Lososova, Z., de Bello, F., Chytry, M., et al., 2015. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786-794. [19] Lu, L.-M., Mao, L.-F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. [20] Mack, R.N., Simberloff, D., Lonsdale, W.M., et al., 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689-710. [21] Miller, J.T., Hui, C., Thornhill, A.H., et al., 2017. Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both? AoB Plants 9, plw80. [22] Omer, A., Fristoe, T., Yang, Q., et al., 2022. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants 8, 906-914. [23] Park, D.S., Feng, X., Maitner, B.S., et al., 2020. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl. Acad. Sci. U.S.A. 117, 10904-10910. [24] Pysek, P., Richardson, D.M., Rejmanek, M., et al., 2004. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53, 131-143. [25] Pysek, P., Jaroik, V.c., Pergl, J., et al., 2009. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891-903. [26] Qian, H., 2007. Relationships between plant and animal species richness at a regional scale in China. Conserv. Biol. 21, 937-944. [27] Qian, H., Deng, T., Jin, Y., et al., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [28] Qian, H., Jin, Y., 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255-263. [29] Qian, H., Sandel, B. 2022. Darwin’s preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Glob. Ecol. Biogeogr. 31, 531-545. [30] Qian, H., Rejmanek, M., Qian, S., 2022a. Are invasive species a phylogenetically clustered subset of naturalized species in regional floras? A case study for flowering plants in China. Divers. Distrib. 28, 2084-2093. [31] Qian, H., Qian, S., Sandel, B., 2022b. Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Glob. Ecol. Biogeogr. 31, 1864-1876. [32] Richardson, D.M., Pysek, P., 2012. Naturalization of introduced plants: ecological drivers of biogeographic patterns. New Phytol. 196, 383-396. [33] Richardson, D.M., Pysek, P., Rejmanek, M., et al., 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93-107. [34] Sandel, B., Tsirogiannis, C., 2016. Species introductions and the phylogenetic and functional structure of California's grasses. Ecology 97, 472-483. [35] Simberloff, D., Martin, J.L., Genovesi, P., et al., 2013. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58-66. [36] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [37] Thuiller, W., Gallien, L., Boulangeat, I., et al., 2010. Resolving Darwin's naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461-475. [38] Tsirogiannis, C., Sandel, B., 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709-714. [39] van Kleunen, M., Dawson, W., Essl, F., et al., 2015. Global exchange and accumulation of non-native plants. Nature 525, 100-103. [40] Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145-155. [41] Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475-505. [42] Williamson, M., 2006. Explaining and predicting the success of invading species at different stages of invasion. Biol. Invasions 8, 1561-1568. [43] Wu, C.-Y., Raven, P.H., Hong, D.-Y., eds. 1994-2013. Flora of China, vols. 2-25, Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. [44] Xu, M., Li, S.-P., Dick, J.T.A., et al., 2022. Exotic fishes that are phylogenetically close but functionally distant to native fishes are more likely to establish. Glob. Change Biol. 28, 5683-5694. [45] Zhang, A., Hu, X., Yao, S., et al., 2021. Alien, naturalized and invasive plants in China. Plants 10, 2241. [46] Zhang, J., Qian, H., 2023. U.Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers. 45 [47] Zhang, S.-B., Slik, J.W.F., Zhang, J.-L., et al., 2011. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob. Ecol. Biogeogr. 20, 241-250. |