Plant Diversity ›› 2024, Vol. 46 ›› Issue (01): 101-115.DOI: 10.1016/j.pld.2023.03.007
• Articles • Previous Articles Next Articles
Tao Yanga,b, Jia-Hao Caia, Yan-Zhi Daia, Hong-Yu Chena,c, Lei Hana, Li Zhangc,d, Wei-Yu Lianga, Xu-Jun Lia, Wen-Jia Lia, Jing-Yu Wua, San-Ping Xiea, De-Fei Yana,c
Received:
2022-09-19
Revised:
2023-03-17
Online:
2024-01-25
Published:
2024-03-02
Contact:
De-Fei Yan,E-mail:yandf@lzu.edu.cn
Supported by:
Tao Yang, Jia-Hao Cai, Yan-Zhi Dai, Hong-Yu Chen, Lei Han, Li Zhang, Wei-Yu Liang, Xu-Jun Li, Wen-Jia Li, Jing-Yu Wu, San-Ping Xie, De-Fei Yan. Megafossils of Betulaceae from the Oligocene of Qaidam Basin and their paleoenvironmental and phytogeographic implications[J]. Plant Diversity, 2024, 46(01): 101-115.
Add to citation manager EndNote|Ris|BibTeX
[1] Ashburner, K., McAllister, H., 2013. The Genus Betula. A taxonomic revision of birches. Univ. Chicago Press, pp. 1-432. [2] An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature 411, 62-66. [3] Ai, K.K., Shi, G.L., Zhang, K.X., et al., 2018. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Paleogeogr. Paleoclimatol. Paleoecol. 515, 143-151. [4] Boratynski, A., 2014. Carpinus betulus. In: Stimm, B., Roloff, A., Lang, U.M., Weisgerber, H. (Eds), Enzyklopadie der Holzgewachse: Handbuch und Atlas der Dendrologie. [5] Chang, M.M., Wang, X.M., Liu, H.Z., et al., 2008. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc. Natl. Acad. Sci. U.S.A. 105, 13246-13251. [6] Chang, H., Li, L.Y., Qiang, X.K., et al., 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth Planet. Sci. Lett. 430, 271-283. [7] Chang, M.M., Miao, D.S., 2016. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment. Chin. Sci. Bull. 61, 981-995. [8] Chen, H.Y., Yang, T., Han, L., et al., 2021. The Oligocene Equisetum from Qaidam Basin, Northeastern Tibetan Plateau in China and its implications. Hist. Biol. 33, 2845-2853. [9] Chen, Z.D., 1994a. Phylogeny and phytogeography of the Betulaceae. Acta Phytotaxon. Sin. 32, 1-31. [10] Chen, Z.D., 1994b. Phylogeny and phytogeography of the Betulaceae (CONT). Acta Phytotaxon. Sin. 32, 101-153. [11] Crane, P.R., 1981. Betulaceous leaves and fruits from the British Upper Palaeocene. Bot. J. Linn. Soc. 83, 103-136. [12] Crane, P.E., Stockey, R.A., 1987. Betula leaves and reproductive structures from the Middle Eocene of British Columbia, Canada. Can. J. Bot. 65, 2490-2500. [13] Dai, J., Sun, B.N., Xie, S.P., et al., 2013. A new species of Carpinus (Betulaceae) from the Pliocene of Yunnan Province, China. Plant Syst. Evol. 299, 643-658. [14] Denk, T., Bouchal, J.M., Smirnov, P., et al., 2020. Late Oligocene leaf and pollen flora of southwestern Siberia: Taxonomy, biogeography and palaeoenvironments. Hist. Biol. 33, 2951-2976. [15] Deng, T., Wang, X.M., Fortelius, M., et al., 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science 333, 1285-1288. [16] Deng, T., Wang, X.M., Wu, F.X., et al., 2019a. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob. Planet. Change 174, 58-69. [17] Deng, T., Wu, FX., Wang, S.Q., et al., 2019b. Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau. Chin. Sci. Bull. 64, 2894-2906. [18] Ding, W.N., Ree, R.H., Spicer, R.A., et al., 2020. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578-581. [19] Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., et al., 2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature 445, 635-638. [20] Ellis, B., Daly, D.C., Hickey, L.J., et al., 2009. Manual of Leaf Architecture. Cornell University Press, New York. [21] Fang, J., Wang, Z., Tang, Z., 2011. Atlas of Woody Plants in China: Distribution and Climate. Higher Education Press, Springer. [22] Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 258, 293-306. [23] Foster, A.S., 1952. Foliar venation in angiosperms from an ontogenetic standpoint. Am. J. Bot. 39, 752-766. [24] Garzione, C.N., Ikari, M.J., Basu, A.R., 2005. Source of Oligocene to Pliocene sedimentary rocks in the Linxia Basin in northeastern Tibet from Nd isotopes: Implications for tectonic forcing of climate. Geol. Soc. Am. Bull. 117, 1156-1166. [25] Geng, B.Y., Tao, J.R., Xie, G.P., 2001. Early Tertiary fossil plants and paleoclimate of Lanzhou Basin. J. Syst. Evol. 39, 105-115. [26] Guo, S.X., Spicer, R.A., Widdowson, M., et al., 2019. The composition of the middle Miocene (15 Ma) Namling paleoflora, South Central Tibet, in the context of other Tibetan and Himalayan Floras. Rev. Palaeobot. Palynol. 271, 104088. [27] Han, F., Yang, T.L., Zhang, K.X., et al., 2020. Early Oligocene Podocarpium (Leguminosae) from Qaidam Basin and its paleoecological and biogeographical. Rev. Palaeobot. Palynol. 282, 104309. [28] He, P.J., Song, C.H., Wang, Y.D., et al., 2021. Early Cenozoic activated deformation in the Qilian Shan, northeastern Tibetan Plateau: Insights from detrital apatite fission-track analysis. Basin Res. 33, 1731-1748. [29] Hickey, L.J., 1977. Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota. Geol. Soc. Am. Memoirs 150. [30] Huang, J., 2017. The middle Miocene Wenshan flora, Yunnan, southwestern China and its palaeoenvironment reconstruction. Ph.D. Dissertation. University of Chinese Academy of Sciences. [31] Huang, J., Su, T., Li, S.F., et al., 2020. Pliocene flora and paleoenvironment of Zanda Basin, Tibet, China. Sci. China-Earth Sci. 63, 212-223. [32] Huang, Y.J., Jia, L.B., Wang, Q., et al., 2016. Cenozoic plant diversity of Yunnan: A review. Plant Divers. 38, 271-282. [33] Hummel, A., 1991. The Pliocene leaf flora from Ruszow near Zary in Lower Silesia, south-west Poland. Part II. (Betulaceae). Acta Palaeobot. 31, 73-151. [34] Ji, J.L., Zhang, K.X., Clift, P.D., et al., 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam Basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Res. 46, 141-155. [35] Jia, L.B., Su, T., Huang, Y.J., et al., 2019. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. J. Syst. Evol. 57, 94-104. [36] Jin, J.H., Shang, P., 1998. Discovery of Early Tertiary Flora in Shenbei Coalfield, Liaoning. Acta Scientiarum Naturalium Universitatis Sunyatseni 37, 129-130. [37] Koehler, J., 2003. Oligocene macroflora of Enspel (Germany). Pangaea https://doi.org/10.1594/PANGAEA.106541. [38] Krussmann, G., 1976. Handbuch der Laubgeholze, vol. 1. Belin-Hamburg: Paul Parey. [39] Kvacek, Z., Walther, H., 2006. Oligocene macroflora of Bechlejovice (Czech Republic). Pangaea https://doi:10.1594/PANGAEA.510779. [40] Li, H.M., Guo, S.X., 1976. The Miocene flora from Namling of Xizang. Acta Palaeontol. Sin. 15, 7-18. [41] Li, P.Q., Skvortsov, A.K., 1999. Betulaceae. In: Wu, C.Y., Raven, P.H., Hong, D.Y. (Eds), Flora of China Vol. 4. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, pp. 286-313. [42] Li, S.Y., Currie, B.S., Rowley, D.B., et al., 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region. Earth Planet. Sci. Lett. 432, 415-424. [43] Lin, Z.C., Sun, B.N., Lomax, B.H., et al., 2010. Leaf megafossils of Betula yunnanensis sp. nov. (Betulaceae) from the Mangbang Formation, SW China and its taphonomic implications. Rev. Palaeobot. Palynol. 163, 84-103. [44] Linnemann, U., Su, T., Kunzmann, L., et al., 2018. New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots. Geology 46, 3-6. [45] Li, W.C., Huang, J., Chen, L.L., et al., 2022. Podocarpium (Fabaceae) from the late Eocene of central Tibetan Plateau and its biogeographic implication. Rev. Palaeobot. Palynol. 305, 104745. [46] Liu, J., Su, T., Spicer, R.A., et al., 2019. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Paleogeogr. Paleoclimatol. Paleoecol. 524, 33-40. [47] Liu, X.Y., Manchester, S.R., Jin, J.H., 2014. Alnus subgenus Alnus in the Eocene of western North America based on leaves, associated catkins, pollen, and fruits. Am. J. Bot. 101, 1925-1943. [48] Liu, Y.S., 1996. Foliar architecture of Betulaceae and a revision of Chinese betulaceous megafossils. Palaeontographica Abteilung B-Palaeophytologie Palaeobotany-Palaeophytology 239, 23-57. [49] Low, S.L., Su, T., Spicer, T., et al., 2019. Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. J. Syst. Palaeontol. 18, 415-431. [50] Lu, H.J., Xiong, S.F., 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet. Sci. Lett. 288, 539-550. [51] Lu, J.F., Song, B.W., Chen, R.M., et al., 2010. Palynological assemblage of Eocene-Oligocene pollen and their biostratigraphic correlation in Dahonggou, Daqaidam area, Qaidam Basin. J. China Univ. Geosci. 35, 839-848. [52] Mai, D.H., 1981. Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiar. Flora 171, 525-582. [53] Mai, D.H., Walther, H., 1988. Die pliozanen Floren von Thuringen, Deutsche Demokratische Republik. Quartarpalaontologie 7, 55-297. [54] Mai, D.H., Walther, H., 1991. Die oligozanen und untermiozanen Floren Nordwest-Sachsens und des Bitterfelder Raumes. Abhandlungen des Staatlichen Museums fur Mineralogie und Geologie zu Dresden 38, 1-230. [55] Manchester, S.R., 1999. Biogeographical relationships of North American Tertiary floras. Ann. Mo. Bot. Gard. 86, 472-522. [56] Manchester, S.R., Crane, P.R., 1987. A new genus of Betulaceae from the Oligocene of western North America. Bot. Gazette 148, 263-273. [57] Mennecart, B., Geraads, D., Spassov, N., et al., 2018. Discovery of the oldest European ruminant in the late Eocene of Bulgaria: Did tectonics influence the diachronic development of the Grande Coupure? Paleogeogr. Paleoclimatol. Paleoecol. 498, 1-8. [58] Meyer, H.W., Manchester, S.R., 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. Univ. California Press Geol. Sci. 141, 1-195. [59] Miao, Y.F., Song, C.H., Fang, X.M., et al., 2016. Late Cenozoic genus Fupingopollenites development and its implications for the Asian summer monsoon evolution. Gondwana Res. 29, 320-333. [60] Milne, R.I., Abbott, R.J., 2002. The origin and evolution of Tertiary relict floras. Adv. Bot. Res. 38, 281-314. [61] Pigg, K.B., Manchester, S.R., Wehr, W.C., 2003. Corylus, Carpinus and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby Formations of northwestern North America. Int. J. Plant Sci. 164, 807-822. [62] Renner, S.S., 2016. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J. Biogeogr. 43, 1479-1487. [63] Song, B.W., Spicer, R.A., Zhang, K.X., et al., 2020. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth Planet. Sci. Lett., 537, 116175. [64] Scotese, C.R. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program, PALEOMAP Project. http://www.earthbyte.org/paleomap-paleoatlas-for-gplates/. [65] Song, Z.Q., Shi, G.L., Chen, Y.F., et al., 2014. Winged fruits of Ailanthus (Simaroubaceae) from the Oligocene Ningming formation of Guangxi, and there taxonomic and biogeographic implications. Acta Palaeontol. Sin. 53, 191-200. [66] Spicer, R.A., Harris, N.B.W., Widdowson, M., et al., 2003. Constant elevation of Southern Tibet over the past 15 million years. Nature 412, 622-624. [67] Stults, D.Z., Axsmith, B.J., Haywick, D., 2002. Evidence of Carpinus (Betulaceae) in the late Tertiary (Pliocene) of Alabama. Am. J. Bot. 89, 1547-1549. [68] Spicer, R.A., Su, T., Valdes, P.J., et al., 2020. Why the ‘Uplift of the Tibetan Plateau’ is a myth. Natl. Sci. Rev. 8, nwaa091. [69] Stults, D.Z., Axsmith, B.J., 2009. Betulaceae from the Pliocene and Pleistocene of southwest Alabama, southeastern United States. Rev. Palaeobot. Palynol., 155, 25-31. [70] Su, T., Spicer, R.A., Li, S.H., et al., 2018. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl. Sci. Rev. 5, 642-652. [71] Su, T., Farnsworth, A., Spicer, R.A., et al., 2019. No high Tibetan Plateau until the Neogene. Sci. Adv. 5, eaav2189. [72] Su, T., Spicer, R.A., Wu, F.X., et al., 2020. A middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl. Acad. Sci. U.S.A. 7, 32989-32995. [73] Sun, B., Wang, Y.F., Li, C.S., et al., 2015. Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence. Sci. Rep. 5, 10379. [74] Sun, G., Ji, Q., Dilcher, D.L., et al., 2002. Archaefructaceae, a new basal angiosperm family. Science 296, 899-904. [75] Sun, Z.M., Yang, Z.Y., Pei, J.L., et al., 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan Plateau. Earth Planet. Sci. Lett. 237, 635-646. [76] Tanai, T., 1970. The Oligocene floras from the Kushiro coal field, Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series IV. Geology and Mineralogy, 14, 383-514. [77] Tanai, T., 1972. Tertiary history of vegetation in Japan. In: Graham A (ed) Floristics and Palaeofloristics of Asia and eastern North America. Amsterdam: Elsevier. [78] Tanai, T., Uemura, K., 1991. The Oligocene Noda Flora from the Yuya-wan area of the western end of Honshu, Japan. Part I. Bulletin of the National Science Museum, Tokyo, Series C, 17, 57-80. [79] Tang, H., Liu, J., Wu, FX., et al., 2019. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. J. Syst. Evol. 57, 670-677. [80] Tao, J.R., Du, N.Q., 1987. Miocene flora from Markam County and fossil record of Betulaceae. Acta Bot. Sin. 29, 649-655. [81] Tao, J.R., Xiong, X.Z., 1986. The Latest Cretaceous flora of Heilongjiang Province and the floristic relationship between East Asia and North America. Acta Phytotaxon. Sin. 24, 121-135. [82] Tian, Y.M., Spicer, R.A., Huang, J., et al., 2021. New early Oligocene zircon U-Pb dates for the ‘Miocene’ Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment. Earth Planet. Sci. Lett. 565, 116929. [83] Tiffney, B.H., Manchester, S.R., 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162, S3-S17. [84] Utescher, T., Mosbrugger, V., 2015. The Palaeoflora Database. At http://www.geologie.unibonn.de/Palaeoflora. [85] Walther, H., 2003. Oligocene macroflora of Kleinsaubernitz (Germany). Pangaea https://doi.org/10.1594/PANGAEA.126036. [86] Wang, N., Wu, F.X., 2015. New Oligocene cyprinid in the central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol. Res. 62, 274-285. [87] Wang, N., Kelly, L.J., McAllister, H.A., et al., 2021. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Mol. Phylogenet. Evol. 160, 107126. [88] Wang, Q., Dilcher, D.L., Lott, T.A., 2007. Podocarpium A. Braun ex Stizenberger 1851 from the middle Miocene of Eastern China, and its palaeoecology biogeography. Acta Palaeobot. 47, 237-251. [89] Wen, J., Zhang, J.Q., Nie, Z.L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 5, 4. [90] Wheeler, E., Scott, R.A., Barghoorn, E.S., 1977. Fossil dicotyledonous woods from Yellowstone National Park. J. Arn. Arb. 58, 280–306. [91] Wilde, V., Frankenhauser, H., 1998. The middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany). Rev. Palaeobot. Palynol. 101, 7-28. [92] Wilf, P., Wing, S.L., Meyer, H.W., et al., 2021. An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning. PhytoKeys 187, 93-128. [93] Wolfe, J.A., Wehr, W., 1987. Middle Eocene dicotyledonous plants from Republic, northeastern Washington. U.S. Geol. Surv. Bull. 1597, 1-25. [94] Worobiec, G., Szynkiewicz, A., 2007. Betulaceae leaves in Miocene deposits of the Belchatow Lignite Mine (Central Poland). Rev. Palaeobot. Palynol. 147, 28-59. [95] Writing Group of Cenozoic Plants of China (WGCPC). 1978. Cenozoic plants from China, fossil plants of China. Vol. 3. Beijing: Science Press. [96] Wu, F.X., Miao, D.S., Chang, M.M., et al., 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep. 7, 878. [97] Wu, M.H., Zhuang, G.S., Hou, M.Q., et al., 2021. Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: Manifestation of climatic wetting during the Oligocene icehouse. Earth Planet. Sci. Lett. 565, 116935. [98] Xiong, Z.Y., Ding, L., Spicer, R.A., et al., 2020. The early Eocene rise of the Gonjo Basin, SE Tibet: From low desert to high forest. Earth Planet. Sci. Lett. 543, 116312. [99] Xu, H., Su, T., Zhou, Z.K., 2018. Leaf and infructescence fossils of Alnus (Betulaceae) from the late Eocene of the southeastern Qinghai-Tibetan Plateau. J. Syst. Evol. 57, 105-113. [100] Xu, Q.Q., Qiu, J., Zhou, Z.K., et al., 2015. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications. Front. Plant Sci. 6, 938-951. [101] Xue, L., Jia, L.B., Nam, G., et al., 2020. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia. Plant Divers. 42, 155-167. [102] Yan, D.F., Zhang, L., Han, L., et al., 2018. Podocarpium from the Oligocene of NW Qaidam Basin, China and its implications. Rev. Palaeobot. Palynol. 259, 1-9. [103] Yang, T., Zhang, L., Li, W.J., et al., 2018. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J. Vertebr. Paleontol. 38, 1-12. [104] Yang, T., Han, L., Chen, H.Y., et al., 2021a. Oligocene Desmanthus (Leguminosae) from the Qaidam Basin in northeastern Tibetan Plateau, China, and its implications for paleoclimate and paleoelevation. Hist. Biol. 33, 2744-2754. [105] Yang, T., Jia, J.W., Chen, H.Y., et al., Oligocene Ailanthus from northwestern Qaidam Basin, northern Tibetan Plateau, China and its implications. Geol. J. 56, 616-627. [106] Yang, T., Liang, W.Y., Cai, J.H., et al., 2022. A new cyprinid from the Oligocene of Qaidam Basin, north-eastern Tibetan plateau, and its implications. J. Syst. Palaeontol. 19, 1161-1182. [107] Yang, T., 2022. Fossil schizothoracines from the Oligocene of northwestern Qaidam Basin and their implications. Ph.D. thesis. Lanzhou University, Lanzhou. [108] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. [109] Zanazzi, A., Kohn, M.J., MacFadden, B.J., et al., 2007. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature 445, 639-642. [110] Zastawniak, E., Walther, H., 1998. Betulaceae from Sosnica near Wroclaw (Poland) - a revision of Goeppert’s original materials and a study of more recent collections. Acta Palaeobot. 38, 87-145. [111] Zhilin, S.G., 1989. History of the development of the temperate forest flora in Kazakhstan, U.S.S.R. from the Oligocene to the Early Miocene. The Botanical Rev. 55, 205-330. [112] Zhong, X., 2007. Discovery of plant fossils of Shangganchaigou Formation in south slope of Arkin Mountain in Qaidam Basin and their geological significance. Gansu Geology 16, 26-30. [113] Zhou, Z.K., Liu, J., Chen, L.L., et al., 2022. Cenozoic plants from Tibet: An extraordinary decade of discovery, understanding and implications. Sci. China-Earth Sci. 65, https://doi.org/10.1007/s11430-022-9980-9. |
[1] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae) [J]. Plant Diversity, 2023, 45(05): 501-512. |
[2] | Xiao-Yan Liu, Han-Zhang Song, Xin-Kai Wu, Jia-Rong Hu, Wei-Ye Huang, Cheng Quan, Jian-Hua Jin. Late Oligocene fossil acorns and nuts of Quercus section Cyclobalanopsis from the Nanning Basin, Guangxi, South China [J]. Plant Diversity, 2023, 45(04): 434-445. |
[3] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae) [J]. Plant Diversity, 2023, 45(01): 6-19. |
[4] | Li-Guo Zhang, Xiao-Qian Li, Wei-Tao Jin, Yu-Juan Liu, Yao Zhao, Jun Rong, Xiao-Guo Xiang. Asymmetric migration dynamics of the tropical Asian and Australasian floras [J]. Plant Diversity, 2023, 45(01): 20-26. |
[5] | Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains [J]. Plant Diversity, 2023, 45(01): 80-97. |
[6] | Ai Song, Jia Liu, Shui-Qing Liang, Truong Van Do, Hung Ba Nguyen, Wei-Yu-Dong Deng, Lin-Bo Jia, Cédric Del Rio, Gaurav Srivastava, Zhuo Feng, Zhe-Kun Zhou, Jian Huang, Tao Su. Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications [J]. Plant Diversity, 2022, 44(04): 406-416. |
[7] | Changkyun Kim, Dong-Kap Kim, Hang Sun, Joo-Hwan Kim. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea [J]. Plant Diversity, 2022, 44(02): 170-180. |
[8] | Hua Zhu, Peter Ashton, Bojian Gu, Shisun Zhou, Yunhong Tan. Tropical deciduous forest in Yunnan, southwestern China: Implications for geological and climatic histories from a little-known forest formation [J]. Plant Diversity, 2021, 43(06): 444-451. |
[9] | Lin-Bo Jia, Gi-Soo Nam, Tao Su, Gregory W. Stull, Shu-Feng Li, Yong-Jiang Huang, Zhe-Kun Zhou. Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants [J]. Plant Diversity, 2021, 43(06): 480-491. |
[10] | Feng-Wei Lei, Ling Tong, Yi-Xuan Zhu, Xian-Yun Mu, Tie-Yao Tu, Jun Wen. Plastid phylogenomics and biogeography of the medicinal plant lineage Hyoscyameae (Solanaceae) [J]. Plant Diversity, 2021, 43(03): 192-197. |
[11] | Ran Meng, Ying Meng, Yong-Ping Yang, Ze-Long Nie. Phylogeny and biogeography of Maianthemum (Asparagaceae: Nolinoideae) revisited with emphasis on its divergence pattern in SW China [J]. Plant Diversity, 2021, 43(02): 93-101. |
[12] | Yi-Min Tian, Jian Huang, Tao Su, Shi-Tao Zhang. Early Oligocene Itea (Iteaceae) leaves from East Asia and their biogeographic implications [J]. Plant Diversity, 2021, 43(02): 142-151. |
[13] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae) [J]. Plant Diversity, 2021, 43(01): 1-14. |
[14] | Popova Svetlana, Utescher Torsten, Averyanova Anna, Tarasevich Valentina, Tropina Polina, Xing Yaowu. Early Miocene flora of central Kazakhstan (Turgai Plateau) and its paleoenvironmental implications [J]. Plant Diversity, 2019, 41(03): 183-197. |
[15] | Rong Li, Lishen Qian, Hang Sun. Current progress and future prospects in phylofloristics [J]. Plant Diversity, 2018, 40(04): 141-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||