Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 406-415.DOI: 10.1016/j.pld.2023.12.003
• Articles • Previous Articles
Wanwalee Kongjarata,b, Lu Hana,b, Amy Ny Aina Aritsaraa,c, Shu-Bin Zhanga,c, Gao-Juan Zhaoa,c, Yong-Jiang Zhangd,e, Phisamai Maenpuena,b, Ying-Mei Lif, Yi-Ke Zoua,b, Ming-Yi Lia,g, Xue-Nan Lia,h, Lian-Bin Taoa, Ya-Jun Chena,c,i
Received:
2023-11-09
Revised:
2023-12-20
Published:
2024-05-20
Contact:
Amy Ny Aina Aritsara,E-mail:amyaritsara@xtbg.ac.cn;Ya-Jun Chen,E-mail:chenyj@xtbg.org.cn
Supported by:
Wanwalee Kongjarat, Lu Han, Amy Ny Aina Aritsara, Shu-Bin Zhang, Gao-Juan Zhao, Yong-Jiang Zhang, Phisamai Maenpuen, Ying-Mei Li, Yi-Ke Zou, Ming-Yi Li, Xue-Nan Li, Lian-Bin Tao, Ya-Jun Chen. Hydraulic properties and drought response of a tropical bamboo (Cephalostachyum pergracile)[J]. Plant Diversity, 2024, 46(03): 406-415.
Add to citation manager EndNote|Ris|BibTeX
[1] Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., et al., 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285-1291. [2] Akinlabi, E.T., Anane-Fenin, K., Akwada, D.R., 2017. Bamboo-the Multipurpose Plant. Springer International Publishing, Cham. pp. 262. [3] Allen, C., Macalady, A., Chenchouni, H., et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660-684. [4] Anderegg, W.R.L., Klein, T., Bartlett, M., et al., 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. U.S.A. 113, 5024-5029. [5] Anderegg, W.R.L., Wolf, A., Arango-Velez, A., et al., 2018. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968-977. [6] Aritsara, A.N.A., Wang, S., Li, B.N., et al., 2022. Divergent leaf and fine root "pressure-volume relationships" across habitats with varying water availability. Plant Physiol. 190, 2246-2259. [7] Banik, R.L., 2015. Morphology and Growth, Bamboo:the Plant and its Uses. Springer, pp. 43-89. [8] Bartlett, M.K., Zhang, Y., Kreidler, N., et al., 2014. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580-1590. [9] Brodersen, C.R., McElrone, A.J., Choat, B., et al., 2013. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol. 161, 1820-1829. [10] Brodribb, T.J., Brodersen, C.R., Carriqui, M., et al., 2021. Linking xylem network failure with leaf tissue death. New Phytol. 232, 68-79. [11] Brodribb, T.J., Skelton, R.P., McAdam, S.A., et al., 2016. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol. 209, 1403-1409. [12] Canadell, J., Jackson, R.B., Ehleringer, J.B., et al., 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583-595. [13] Cao, K.F., Yang, S.J., Zhang, Y.J., et al., 2012. The maximum height of grasses is determined by roots. Ecol. Lett. 15, 666-672. [14] Carminati, A., Ahmed, M.A., Zarebanadkouki, M., et al., 2020. Stomatal closure prevents the drop in soil water potential around roots. New Phytol. 226, 1541-1543. [15] Chen, Y.J., Choat, B., Sterck, F., et al., 2021a. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecol. Lett. 24, 2350-2363. [16] Chen, Y.J., Maenpuen, P., Zhang, Y.J., et al., 2021b. Quantifying vulnerability to embolism in tropical trees and lianas using five methods:can discrepancies be explained by xylem structural traits?New Phytol. 229, 805-819. [17] Choat, B., Brodribb, T.J., Brodersen, C.R., et al., 2018. Triggers of tree mortality under drought. Nature 558, 531-539. [18] Choat, B., Jansen, S., Brodribb, T.J., et al., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752-755. [19] Clark, L.G., Londono, X., Ruiz-Sanchez, E., 2015. Bamboo taxonomy and habitat, In:Liese, W, Kohl, M (eds), Bamboo:the Plant and its Uses. Springer International Publishing, Cham, pp. 1-30. [20] Dai, A.G., 2011. Drought under global warming:a review. WIREs Climate Change 2, 45-65. [21] Ding, T., Gao, H., 2020. The record-breaking extreme drought in Yunnan province, Southwest China during spring-early summer of 2019 and possible causes. J. Meteorol. Res. 34, 997-1012. [22] Dixon, H.H., Joly, J., 1895. On the ascent of sap. Philos. Trans. R. Soc. Lond. B Biol. Sci. 186, 563-576. [23] Doughty, C.E., Keany, J.M., Wiebe, B.C., et al., 2023. Tropical forests are approaching critical temperature thresholds. Nature 621, 105-111. [24] Duursma, R., Choat, B., 2017. Fitplc-an R package to fit hydraulic vulnerability curves. J. Plant Hydraul. 4, e002. [25] Enarth Maviton, M., Sankar, V.R., 2023. reportGlobal Priority Species of Economically Important Bamboo, INBAR Technical Report No. 44 ed. International Bamboo and Rattan Organization, Beijing. pp. 210. [26] Ennajeh, M., Tounekti, T., Vadel, A.M., et al., 2008. Water relations and drought-induced embolism in olive (Olea europaea) varieties‘Meski'and‘Chemlali'during severe drought. Tree Physiol. 28, 971-976. [27] Fadrique, B., Gann, D., Nelson, B.W., et al., 2021. Bamboo phenology and life cycle drive seasonal and long-term functioning of Amazonian bamboo-dominated forests. J. Ecol. 109, 860-876. [28] Feng, W.J., Leung, M.Y.T., Wang, D.X., et al., 2022. An extreme drought over South China in 2020/21 concurrent with an unprecedented warm Northwest Pacific and La Nina. 39, 1637-1649. [29] Hacke, U.G., Sperry, J.S., 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Systemat. 4, 97-115. [30] Hacke, U.G., Sperry, J.S., Wheeler, J.K., et al., 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26, 689-701. [31] Hacke, U.G., Stiller, V., Sperry, J.S., et al., 2001. Cavitation fatigue, embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol. 125, 779-786. [32] Hammond, W.M., Williams, A.P., Abatzoglou, J.T., et al., 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nat. Commun. 13, 1761. [33] Hao, G.Y., Sack, L., Wang, A.Y., et al., 2010. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731-740. [34] Jacobsen, A., Pratt, R.B., Davis, S., et al., 2014. Geographic and seasonal variation in chaparral vulnerability to cavitation. Madrono 61, 317-327. [35] Johnson, D.M., Wortemann, R., McCulloh, K.A., et al., 2016. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 36, 983-993. [36] Kukowski, K.R., Schwinning, S., Schwartz, B.F., 2013. Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock. Oecologia 171, 819-830. [37] Levionnois, S., Ziegler, C., Jansen, S., et al., 2020. Vulnerability and hydraulic segmentations at the stem-leaf transition:coordination across Neotropical trees. New Phytol. 228, 512-524. [38] Li, Y.Y., Sperry, J.S., Shao, M.G., 2009. Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance. Environ. Exp. Bot. 66, 341-346. [39] Liese, W., Kohl, M., 2015. Bamboo-the Plant and its Uses. Springer Cham, Springer International Publishing Switzerland. pp. 356. [40] Lobo, A., Torres-Ruiz, J.M., Burlett, R., et al., 2018. Assessing inter-and intraspecific variability of xylem vulnerability to embolism in oaks. For. Ecol. Manag. 424, 53-61. [41] McDowell, N.G., Sapes, G., Pivovaroff, A., et al., 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294-308. [42] Meinzer, F.C., Johnson, D.M., Lachenbruch, B., et al., 2009. Xylem hydraulic safety margins in woody plants:coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922-930. [43] Pammenter, N.W., Vander Willigen, C., 1998. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol. 18, 589-593. [44] Pausas, J.G., Paula, S., 2020. Grasses and fire:the importance of hiding buds. New Phytol. 226, 957-959. [45] Perez-Harguindeguy, N., Diaz, S., Garnier, E., et al., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167-234. [46] Pivovaroff, A.L., Sack, L., Santiago, L.S., 2014. Coordination of stem and leaf hydraulic conductance in southern California shrubs:a test of the hydraulic segmentation hypothesis. New Phytol. 203, 842-850. [47] R Core Team, 2023 R:A Language and Environment for Statistical Computing,(Vienna, Austria). [48] Sack, L., Pasquet-Kok, J., Contributors, P., 2011. Leaf Pressure-Volume Curve Parameters. Prometheus. [49] Schenk, H.J., Jackson, R.B., 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480-494. [50] Schenk, H.J., Jackson, R.B., 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126, 129-140. [51] Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji:an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. [52] Scoffoni, C., Albuquerque, C., Brodersen, C.R., et al., 2017. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiol. 173, 1197-1210. [53] Shen, J.X., Zhang, Y.J., Maenpuen, P., et al., 2022. Response of four evergreen savanna shrubs to an incidence of extreme drought:high embolism resistance, branch shedding and maintenance of nonstructural carbohydrates. Tree Physiol. 42, 740-753. [54] Skelton, R.P., Brodribb, T.J., Choat, B., 2017. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 214, 561-569. [55] Smith-Martin, C.M., Muscarella, R., Hammond, W.M., et al., 2023. Hydraulic variability of tropical forests is largely independent of water availability. Ecol. Lett. 26, 1829-1839. [56] Stock, B.C., Semmens, B.X., 2016. MixSIAR GUI User Manual, 3.1 ed, pp. 72. [57] Tao, S., Chave, J., Frison, P.L., et al., 2022. Increasing and widespread vulnerability of intact tropical rainforests to repeated droughts. Proc. Natl. Acad. Sci. U.S.A. 119, e2116626119. [58] Terra, M.d.C.N.S., Prado-Junior, J.A.d., Souza, C.R.d., et al., 2021. Tree species dominance in neotropical savanna aboveground biomass and productivity. For. Ecol. Manag. 496, 119430. [59] Tyree, M.T., 1997. The Cohesion-Tension theory of sap ascent:current controversies. J. Exp. Bot. 48, 1753-1765. [60] Tyree, M.T., Zimmermann, M.H., 2002. Xylem Structure and the Ascent of Sap. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 283. [61] Vargas, G.G., Brodribb, T.J., Dupuy, J.M., et al., 2021. Beyond leaf habit:generalities in plant function across 97 tropical dry forest tree species. New Phytol. 232, 148-161. [62] Vorontsova, M., Clark, L., Dransfield, J., et al., 2016. World Checklist of Bamboos and Rattans. INBAR, Beijing, p. 454. [63] Warton, D.I., Duursma, R.A., Falster, D.S., et al., 2012. Smatr 3-an R package for estimation and inference about allometric lines:the smatr 3-an R package. Methods Ecol. Evol. 3, 257-259. [64] Watson, D.J., 1968. A prospect of crop physiology. Ann. Appl. Biol. 62, 1-9. [65] West, A.G., Dawson, T.E., February, E.C., et al., 2012. Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa. New Phytol. 195, 396-407. [66] Wheeler, J., Huggett, B., Tofte, A., et al., 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Enrivon. 36, 1938-1949. [67] Yan, C.L., Ni, M.Y., Cao, K.F., et al., 2020. Leaf hydraulic safety margin and safety-efficiency trade-off across angiosperm woody species. Biol. Lett. 16, 20200456. [68] Yang, Y.M., Wang, K.L., Pei, S.J., et al., 2004. Bamboo diversity and traditional uses in Yunnan, China. Mt. Res. Dev. 24, 157-165. [69] Yang, D.M., Zhou, W., Wang, X.L., et al., 2023. An analytical complete model of root pressure generation:theoretical bases for studying hydraulics of bamboo. Plant Cell Environ 47, 59-71. [70] Yuan, X., Wang, L.Y., Wu, P.L., et al., 2019. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 10, 4661. [71] Yuen, J.Q., Fung, T., Ziegler, A.D., 2017. Carbon stocks in bamboo ecosystems worldwide:estimates and uncertainties. For. Ecol. Manag. 393, 113-138. [72] Zhang, M.X., Chen, S.L., Jiang, H., et al., 2019. Water-use characteristics and physiological response of Moso bamboo to flash droughts. Int. J. Environ. Res. Publ. Health 16, 2174. [73] Zhou, M.Y., Zhang, Y.X., Haevermans, T., et al., 2017. Towards a complete generic-level plastid phylogeny of the paleotropical woody bamboos (Poaceae:Bambusoideae). Taxon 66, 539-553. [74] Zhu, S.D., Chen, Y.J., Ye, Q., et al., 2018. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol. 38, 658-663. [75] Zhu, S.D., Liu, H., Xu, Q.Y., et al., 2016. Are leaves more vulnerable to cavitation than branches?Funct. Ecol. 30, 1740-1744. |
[1] | Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian. Global patterns and ecological drivers of taxonomic and phylogenetic endemism in angiosperm genera [J]. Plant Diversity, 2024, 46(02): 149-157. |
[2] | Vincent Okelo Wanga, Boniface K. Ngarega, Millicent Akinyi Oulo, Elijah Mbandi Mkala, Veronicah Mutele Ngumbau, Guy Eric Onjalalaina, Wyclif Ochieng Odago, Consolata Nanjala, Clintone Onyango Ochieng, Moses Kirega Gichua, Robert Wahiti Gituru, Guang-Wan Hu. Projected impacts of climate change on the habitat of Xerophyta species in Africa [J]. Plant Diversity, 2024, 46(01): 91-100. |
[3] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[4] | Gang Feng, Ying-Jie Xiong, Hua-Yu Wei, Yao Li, Ling-Feng Mao. Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity [J]. Plant Diversity, 2023, 45(04): 479-484. |
[5] | Boniface K. Ngarega, John M. Nzei, Josphat K. Saina, Marwa Waseem A. Halmy, Jin-Ming Chen, Zhi-Zhong Li. Mapping the habitat suitability of Ottelia species in Africa [J]. Plant Diversity, 2022, 44(05): 468-480. |
[6] | Hong Yang, Ping Li, Guihua Jin, Daping Gui, Li Liu, Chengjun Zhang. Temporal regulation of alternative splicing events in rice memory under drought stress [J]. Plant Diversity, 2022, 44(01): 116-125. |
[7] | Feng-Ping Zhang, Jiao-Lin Zhang, Timothy J. Brodribb, Hong Hu. Cavitation resistance of peduncle, petiole and stem is correlated with bordered pit dimensions in Magnolia grandiflora [J]. Plant Diversity, 2021, 43(04): 324-330. |
[8] | Jun-Nan Wan, Ndungu J. Mbari, Sheng-Wei Wang, Bing Liu, Brian N. Mwangi, Jean R. E. Rasoarahona, Hai-Ping Xin, Ya-Dong Zhou, Qing-Feng Wang. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar [J]. Plant Diversity, 2021, 43(02): 117-124. |
[9] | Richard T. Corlett. Safeguarding our future by protecting biodiversity [J]. Plant Diversity, 2020, 42(04): 221-228. |
[10] | Santosh Kumar Rana, Hum Kala Rana, Krishna Kumar Shrestha, Suresh Sujakhu, Sailesh Ranjitkar. Determining bioclimatic space of Himalayan alder for agroforestry systems in Nepal [J]. Plant Diversity, 2018, 40(01): 1-18. |
[11] | Timothy J. Entwisle, Chris Cole, Peter Symes. Adapting the botanical landscape of Melbourne Gardens (Royal Botanic Gardens Victoria) in response to climate change [J]. Plant Diversity, 2017, 39(06): 338-347. |
[12] | Zhe Ren a, b, Hua Peng a, *, Zhen-Wen Liu a, **. The rapid climate change-caused dichotomy on subtropical evergreen broad-leaved forest in Yunnan: Reduction in habitat diversity and increase in species diversity [J]. Plant Diversity, 2016, 38(03): 142-148. |
[13] | Xiong Li,§, Yunqiang Yang,§, Shihai Yang,§, Xudong Sun, Xin Yin, . Comparative proteomics analyses of intraspecific differences in the response of Stipa purpurea to drought [J]. Plant Diversity, 2016, 38(02): 124-145. |
[14] | Roy Turkington, William L. Harrower. An experimental approach to addressing ecological questions related to the conservation of plant biodiversity in China [J]. Plant Diversity, 2016, 38(01): 1-10. |
[15] | LI Xiong-, YANG Shi-Hai-, YANG Yun-Qiang-, YIN Xin-, SUN Xu-Dong-, YANG Yong-Ping. Comparative Physiological and Molecular Analyses of Intraspecific Differences of Stipa purpurea (Poaceae) Response to Drought [J]. Plant Diversity, 2015, 37(4): 439-452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||