Plant Diversity ›› 2025, Vol. 47 ›› Issue (01): 13-20.DOI: 10.1016/j.pld.2024.07.007
• Articles • Previous Articles
Yongli Wanga, Yan-Da Lib,c, Shuo Wangd, Erik Tihelkab,c, Michael S. Engele,f,g, Chenyang Caib
Received:
2024-02-08
Revised:
2024-07-17
Published:
2025-02-15
Contact:
Chenyang Cai,E-mail:cycai@nigpas.ac.cn
Supported by:
Yongli Wang, Yan-Da Li, Shuo Wang, Erik Tihelka, Michael S. Engel, Chenyang Cai. Modeling compositional heterogeneity resolves deep phylogeny of flowering plants[J]. Plant Diversity, 2025, 47(01): 13-20.
Add to citation manager EndNote|Ris|BibTeX
Angiosperm Phylogeny Group (APG) IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20. Baker, W.J., Bailey, P., Barber, V., et al., 2022. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Syst. Biol. 71, 301-319. Bujaki, T., Rodrigue, N., 2022. Bayesian cross-validation comparison of amino acid replacement models: contrasting profile mixtures, pairwise exchangeabilities, and gamma-distributed rates-across-sites. J. Mol. Evol. 90, 468-475. Cai, C., 2024. Ant backbone phylogeny resolved by modelling compositional heterogeneity among sites in genomic data. Commun. Biol. 7, 106. Cai, C., Tihelka, E., Giacomelli, M., et al., 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771. Chaw, S.M., Liu, Y.C., Wu, Y.W., et al., 2019. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plants 5, 63-73. Chen, J.H., Hao, Z.D., Guang, X.M., et al., 2019. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat. Plants 5, 18-25. Criscuolo, A., Gribaldo, S., 2010. BMGE (Block Mapping and Gathering with Entropy): selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210. Davis, C.C., Xi, Z., Mathews, S., 2014. Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there.. 12, 11. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C., 1978. A model of evolutionary change in proteins. In: Dayhoff, M.O., Ech, R.V. (Eds.), Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Maryland, pp. 345-352. de Sousa, F., Foster, P.G., Donoghue, P.C.J., et al., 2019. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta.). New Phytol. 222, 565-575. Donoghue, P.C.J., Harrison, C.J., Paps, J., et al., 2021. The evolutionary emergence of land plants. Curr. Biol. 31, R1281-R1298. Feuda, R., Dohrmann, M., Walker, P., et al., 2017. Improved modelling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. 27, 3864-3870. Fleming, J.F., Valero-Gracia, A., Struck, T.H., 2023. Identifying and addressing methodological incongruence in phylogenomics: a review. 16, 1087-1104. Foster, P.G., Schrempf, D., Szollősi, G.J., et al., 2022. Recoding amino acids to a reduced alphabet may increase or decrease phylogenetic accuracy. Syst. Biol. 72, 723-737. Giacomelli, M., Rossi, M.E., Lozano-Fernandez, J., et al., 2022. Resolving tricky nodes in the tree of life through amino acid recoding. iScience 25, 105594. Gitzendanner, M.A., Soltis, P.S., Wong, G.K.S., et al., 2018a. Plastid phylogenomic analysis of green plants: a billion years of evolutionary history. Am. J. Bot. 105, 291-301. Gitzendanner, M.A., Soltis, P.S., Yi, T.S., et al., 2018b. Plastome phylogenetics: 30 years of inferences into plant evolution. In: Shu, M.C., Robert, K.J. (Eds.), Advances in Botanical Research Vol. 85. Academic Press, Cambridge, pp. 293-313. Guo, X., Fangm D.M., Sahu, S.K., et al., 2021. Chloranthus genome provides insights into the early diversification of angiosperms. Nat. Commun. 12, 6930. Guo, C., Luo, Y., Gao, L.M., et al., 2023. Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65, 299-323. Harris, B.J., Harrison, C.J., Hetherington, A.M., et al., 2020. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Curr. Biol. 30, 2001-2012. Hernandez, A.M., Ryan, J.F., 2021. Six-state amino acid recoding is not an effective strategy to offset compositional heterogeneity and saturation in phylogenetic analyses. Syst. Biol. 70, 1200-1212. Hoang, D.T., Chernomor, O., von Haeseler, A., et al., 2018. UFBoot2: mproving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. Hou, Z., Ma, X.Y., Shi, X., et al., 2022. insights into a Mesoproterozoic-Neoproterozoic origin and early radiation of green seaweeds (). Nat. Commun. 13, 1610. Hu, H., Sun, P., Yang, Y., et al., 2023. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. J. Integr. Plant Biol. 65, 1479-1489. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., et al., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. Kapli, P., Flouri, T., Telford, M.J., 2021. Systematic errors in phylogenetic trees. Curr. Biol. 31, R59-R64. Kapli, P., Yang, Z., Telford, M.J., 2020. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428-444. Kosiol, C., Goldman, N., Buttimore, N.H., 2004. A new criterion and method for amino acid classification. J. Theor. Biol. 228, 97-106. Lartillot, N., 2020. PhyloBayes: Bayesian phylogenetics using site-heterogeneous models. In: Scornavacca, C., Delsuc, F., Galtier, N. (Eds.), Phylogenetics in the Genomic Era. No ommercial ublisher, uthors pen ccess, pp. 1.5:1-1.5:16. Lartillot, N., 2023. Identifying the best approximating model in Bayesian phylogenetics:Bayes factors, cross-validation or wAIC? Syst. Biol. 72, 616-638. Lartillot, N., Rodrigue, N., Stubbs, D., et al., 2013. MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611-615. Laumer, C.E., Fernandez, R., Lemer, S., et al., 2019. Revisiting metazoan phylogeny with genomic sampling of all phyla. 286, 20190831. Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., et al., 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685. Li, H.T., Luo, Y., Gan, L., et al., 2021. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 19, 232. Li, H.T., Yi, T.S., Gao, L.M., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. Li, Z., De La Torre, A.R., Sterck, L., et al., 2017. Single-copy genes as molecular markers for phylogenomic studies in seed plants. 9, 1130-1147. Liu, Y., Cox, C.J., Wang, W., et al., 2014. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst. Biol. 63, 862-878. Liu, Y., Wang, S.B., Li, L.Z., et al., 2022. The Cycas genome and the early evolution of seed plants. Nat. Plants 8, 389-401. Lozano-Fernandez, J., 2022. A practical guide to design and assess a phylogenomic study. 14, evac129. Ma, J.X., Sun, P.C., Wang, D.D., et al., 2021. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat. Commun. 12, 6929. Marletaz, F., Peijnenburg, K.T.C.A., Goto, T., et al., 2019. A new phylogeny places the enigmatic arrow worms among. Curr. Biol. 29, 312-318. Moore, M.J., Bell, C.D., Soltis, P.S., et al., 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U. S. A. 104, 19363-19368. Puttick, M.N., Morris, J.L., Williams, T.A., et al., 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733-745. Qin, L.Y., Hu, Y.H., Wang, J.P., et al., 2021. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nat. Plants 7, 1239-1253. Ran, J.H., Shen, T.T., Wang, M.M., et al., 2018. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between and angiosperms. B 285, 20181012. Rannala B., Edwards S.V., Leache A., et al., 2020. The multi-species coalescent model and species tree inference. In: Scornavacca, C., Delsuc, F., Galtier, N. (Eds.), Phylogenetics in the Genomic Era. No ommercial ublisher, uthors pen ccess, pp. 3.3:1-3.3:21. Ranwez, V., Douzery, E.J., Cambon, C., et al., 2018. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582-2584. Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492-508. Soltis, P.S., Folk, R.A., Soltis, D.E., 2019. Darwin review: angiosperm phylogeny and evolutionary radiations. B 286, 20190099. Springer, M.S., Gatesy, J., 2014. Land plant origins and coalescence confusion.. 19, 267-269. Springer, M.S., Gatesy, J., 2016. The gene tree delusion. Mol. Phylogenet. Evol. 94, 1-33. Stull, G.W., Qu, X.J., Parins-Fukuchi, C., et al., 2021. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015-1025. Stull, G.W., Pham, K.K., Soltis, P.S., et al., 2023. Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant J. 114, 743-766. Su, D.Y., Yang, L.X., Shi, X., et al., 2021. Large-scale phylogenomic analyses reveal the monophyly of bryophytes and Neoproterozoic origin of land plants. Mol. Biol. Evol. 38, 3332-3344. Tihelka, E., Cai, C.Y., Giacomelli, M., et al., 2021. The evolution of insect biodiversity. Curr. Biol. 31, R1299-R1311. Wang, H.C. Minh, B.Q., Susko, E., et al., 2018. Modelling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216-235. Watanabe, S., 2009. Algebraic Geometry and Statistical Learning Theory (Cambridge Univ. Press). Wickett, N.J., Mirarab, S., Nguyen, N., et al., 2014. analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U. S. A. 111, E4859-E4868. Williams, T.A., Cox, C.J., Foster, P.G., et al., 2020. Phylogenomics provides robust support for a two-domains tree of life. 4, 138-147. Xue, J.Y., Dong, S.S., Wang, M.Q., et al., 2022. Mitochondrial genes from 18 angiosperms fill sampling gaps for phylogenomic inferences of the early diversification of flowering plants. 60, 773-788. Yang, L.X., Su, D.Y., Chang, X., et al., 2020a. Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling.. 1, 100027. Yang, Y.Z., Sun, P.C., Lv, L.K., et al., 2020b. Prickly and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215-222. Yang, T., Sahu, S.K., Yang, L.X., et al., 2022. Comparative analyses of 3654 plastid genomes unravel insights into evolutionary dynamics and phylogenetic discordance of green plants. Front. Plant Sci. 13, 808156. Yang, Z., 2014. Molecular Evolution: A Statistical Approach. Oxford Univ. Press, Oxford, England, xv+492 pp. Zeng, L.P., Zhang, Q., Sun, R.R., et al., 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5, 4956. Zhang, L., Chen, F., Zhang, X., et al., 2020. The water lily genome and the early evolution of flowering plants. Nature 577, 79-84. Zuntini, A.R., Carruthers, T., Maurin, O., et al., 2024. Phylogenomics and the rise of the angiosperms. Nature doi:10.1038/s41586-024-07324-0. |
[1] | Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae) [J]. Plant Diversity, 2024, 46(03): 344-352. |
[2] | Fangbing Li, Hong Qian, Jordi Sardans, Dzhamal Y. Amishev, Zixuan Wang, Changyue Zhang, Tonggui Wu, Xiaoniu Xu, Xiao Tao, Xingzhao Huang. Evolutionary history shapes variation of wood density of tree species across the world [J]. Plant Diversity, 2024, 46(03): 283-293. |
[3] | Hong Qian. Intercontinental comparison of phylogenetic relatedness in introduced plants at the transition from naturalization to invasion: A case study on the floras of South Africa and China [J]. Plant Diversity, 2023, 45(04): 363-368. |
[4] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes [J]. Plant Diversity, 2023, 45(02): 125-132. |
[5] | Juan Chen, Sijin Zeng, Linya Zeng, Khang Sinh Nguyen, Jiawei Yan, Hua Liu, Nianhe Xia. Parahellenia, a new genus segregated from Hellenia (Costaceae) based on phylogenetic and morphological evidence [J]. Plant Diversity, 2022, 44(04): 389-405. |
[6] | Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang. Recent advances on phylogenomics of gymnosperms and a new classification [J]. Plant Diversity, 2022, 44(04): 340-350. |
[7] | Zeng-Qiang Xia, Zuo-Ying Wei, Hui Shen, Jiang-Ping Shu, Ting Wang, Yu-Feng Gu, Amit Jaisi, Yue-Hong Yan. Lycophyte transcriptomes reveal two whole-genome duplications in Lycopodiaceae: Insights into the polyploidization of Phlegmariurus [J]. Plant Diversity, 2022, 44(03): 262-270. |
[8] | Feng-Wei Lei, Ling Tong, Yi-Xuan Zhu, Xian-Yun Mu, Tie-Yao Tu, Jun Wen. Plastid phylogenomics and biogeography of the medicinal plant lineage Hyoscyameae (Solanaceae) [J]. Plant Diversity, 2021, 43(03): 192-197. |
[9] | Xin-Yu Du, Jin-Mei Lu, De-Zhu Li. Extreme plastid RNA editing may confound phylogenetic reconstruction: A case study of Selaginella (lycophytes) [J]. Plant Diversity, 2020, 42(05): 356-361. |
[10] | Jian-Fei Ye, Yun Liu, Zhi-Duan Chen. Dramatic impact of metric choice on biogeographical regionalization [J]. Plant Diversity, 2020, 42(02): 67-73. |
[11] |
Liansheng Xu, Zhuqiu Song, Tian Li, Zichao Jin, Buyun Zhang, Siyi Du, Shuyuan Liao, Xingjie Zhong, Yousheng Chen.
New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq) [J]. Plant Diversity, 2018, 40(06): 1-2. |
[12] | Xiangqin Yu, Dan Yang, Cen Guo, Lianming Gao. Plant phylogenomics based on genome-partitioning strategies: Progress and prospects [J]. Plant Diversity, 2018, 40(04): 158-164. |
[13] | Huan-Lei Zhang, Jian-Jun Jin, Michael J. Moore, Ting-Shuang Yi, De-Zhu Li. Plastome characteristics of Cannabaceae [J]. Plant Diversity, 2018, 40(03): 127-137. |
[14] | GUO Liang, HU Bo, DAI Jun-Hu, XU Jian-Chu. Response of Chestnut Flowering in Beijing to Photosynthetically Active Radiation Variation and Change in Recent Fifty Years [J]. Plant Diversity, 2014, 36(04): 523-532. |
[15] | ZHANG Yun-Jie, LI De-Zhu. Advances in Phylogenomics Based on Complete Chloroplast Genomes [J]. Plant Diversity, 2011, 33(4): 365-375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||