Plant Diversity ›› 2020, Vol. 42 ›› Issue (05): 343-350.DOI: 10.1016/j.pld.2020.06.003
• Articles • Previous Articles Next Articles
Shuang Lia,b, Shang-Li Liua,b, Si-Yu Peia,b, Man-Man Ningc, Shao-Qing Tanga,b
Received:
2019-12-22
Revised:
2020-05-30
Online:
2020-10-25
Published:
2020-10-28
Contact:
Shuang Li, Shang-Li Liu, Si-Yu Pei, Man-Man Ning, Shao-Qing Tang
Supported by:
Shuang Li, Shang-Li Liu, Si-Yu Pei, Man-Man Ning, Shao-Qing Tang. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers[J]. Plant Diversity, 2020, 42(05): 343-350.
Add to citation manager EndNote|Ris|BibTeX
Abbasov, M., Akparov, Z., Gross, T., et al., 2018. Genetic relationship of diploid wheat(Triticum spp.) species assessed by SSR markers. Genet. Resour. Crop Evol. 65, 1441-1453. https://doi.org/10.1007/s10722-018-0629-2. An, M.T., 2005. Present status of the natural resource of camellias in Guizhou Province. Guizhou Forestry Sci. Tech. 33, 26-29. Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036. Bhattacharyya, P., Kumaria, S., 2015. Molecular characterization of Dendrobium nobile Lindl., an endangered medicinal orchid, based on randomly amplified polymorphic DNA. Plant Systemat. Evol. 301, 201-210. https://doi.org/10.1007/s00606-014-1065-1. Birky, C.W., 2008. Uniparental inheritance of organelle genes. Curr. Biol. 18, R692-R695. https://doi.org/10.1016/j.cub.2008.06.049. Chen, H.L., Lu, X.L., Ye, Q.Q., et al., 2019. Genetic diversity and structure of three yellow Camellia species based on SSR markers. Guihaia 39, 318-327. Chung, M.Y., López-Pujol, J., Son, S., et al., 2018. Patterns of genetic diversity in rare and common orchids focusing on the Korean peninsula: implications for conservation. Bot. Rev. 84, 1-25. https://doi.org/10.1007/s12229-017-9190-5. Coates, D.J., Carstairs, S., Hamley, V.L., 2003. Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae). Am. J. Bot. 90, 997-1008. https://doi.org/10.3732/ajb.90.7.997. Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001-2014. Doyle, J.J., Doyle, J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12, 39-40. Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. https://doi.org/10.1093/nar/gkh340. Ellstrand, N.C., Elam, D.R., 1993. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Systemat. 2, 217-242. Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x. Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491. Gao, Y., Ai, B., Kong, H., et al., 2015. Geographical pattern of isolation and diversification in karst habitat islands: a case study in the Primulina eburnea complex.J. Biogeogr. 42, 2131-2144. https://doi.org/10.1111/jbi.12576. Huang, C.-C., Hung, K.-H., Hwang, C.-C., et al., 2011. Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae)inferred from chloroplast and nuclear DNA. BMC Evol. Biol. 11, 108. https://doi.org/10.1186/1471-2148-11-108. Levy, E., Byrne, M., Coates, D.J., et al., 2016. Contrasting influences of geographic range and distribution of populations on patterns of genetic diversity in two sympatric Pilbara acacias. PloS One 11, e0163995. https://doi.org/10.1371/journal.pone.0163995. Li, X., Wang, J., Fan, Z., et al., 2019. Genetic diversity in the endangered Camellia nitidissima assessed using transcriptome-based SSR markers. Trees (Berl.) 34, 543-552. https://doi.org/10.1007/s00468-019-01935-1. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. https://doi.org/10.1093/bioinformatics/btp187. Liu, Y., Yang, S., Ji, P., et al., 2012. Phylogeography of Camellia taliensis (Theaceae)inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation. BMC Evol. Biol. 12, 92. https://doi.org/10.1186/1471-2148-12-92. Liufu, Y.-Q., Peng, G.-Q., Lu, Y.-B., et al., 2014. Development and characterization of 38 microsatellite markers for Camellia flavida based on transcriptome sequencing. Conserv. Genet. Resour. 6, 1007-1010. https://doi.org/10.1007/s12686-014-0270-0. Logan, S.A., Phuekvilai, P., Sanderson, R., et al., 2019. Reproductive and population genetic characteristics of leading-edge and central populations of two temperate forest tree species and implications for range expansion. For. Ecol.Manage. 433, 475-486. https://doi.org/10.1016/j.foreco.2018.11.024. Lowe, A.J., Boshier, D., Ward, M., et al., 2005. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95, 255-273. https://doi.org/10.1038/sj.hdy.6800725. Lu, Y.-B., Liufu, Y.-Q., Peng, G.-Q., et al., 2014. Development of 21 microsatellite primers for Camellia pingguoensis (Theaceae) using 454 sequencing. Conserv.Genet. Resour. 6, 791-793. https://doi.org/10.1007/s12686-014-0221-9. Lu, X.L., Chen, H.L., Liang, X.Y., et al., 2019. Genetic diversity of peripheral population of Camellia nitidissima and variety microcarpa. Mol. Plant Breed. 17, 301-306. Lu, X., Chen, H., Wei, S., et al., 2020. Chloroplast and nuclear DNA analyses provide insight into the phylogeography and conservation genetics of Camellia nitidissima (Theaceae) in southern Guangxi, China. Tree Genet. Genomes 16, 8.https://doi.org/10.1007/s11295-019-1390-1. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209-220. Miao, C.-Y., Yang, J., Mao, R.-L., et al., 2017. Phylogeography of Achyranthes bidentata(Amaranthaceae) in China's warm-temperate zone inferred from chloroplast and nuclear DNA: insights into population dynamics in response to climate change during the Pleistocene. Plant Mol. Biol. Rep. 35, 166-176. https://doi.org/10.1007/s11105-016-1013-z. Nybom, H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x. Peng, G.Q., Tang, S.Q., 2017. Fine-scale spatial genetic structure and gene flow of Camellia flavida, a shade-tolerant shrub in karst. Acta Ecol. Sin. 37, 7313-7323. Pons, O., Petit, R.J., 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144, 1237-1245. Qin, H.N., Yang, Y., Dong, S.Y., et al., 2017. Threatened species list of China's higher plants. Biodivers. Sci. 25, 696-744. Ramanatha Rao, V., Hodgkin, T., 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult. 68, 1-19.https://doi.org/10.1023/A:1013359015812. Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43, 223-225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x. Rosenberg, N.A., Burke, T., Elo, K., et al., 2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159, 699-713. Solórzano, S., Arias, S., Dávila, P., 2016. Genetics and conservation of plant species of extremely narrow geographic range. Diversity 8, 31. https://doi.org/10.3390/d8040031. Spooner, D.M., Núñez, J., Trujillo, G., et al., 2007. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc. Natl. Acad. Sci. U. S. A. 104, 19398-19403.https://doi.org/10.1073/pnas.0709796104. Sun, S.-G., Huang, Z.-H., Chen, Z.-B., et al., 2017. Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). Am. J. Bot. 104, 468-476. https://doi.org/10.3732/ajb.1600428. Ueno, S., Tomaru, N., Yoshimaru, H., et al., 2000. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Ecol. 9, 647-656. Wei, S.-J., Lu, Y.-B., Ye, Q.-Q., et al., 2017. Population genetic structure and phylogeography of Camellia flavida (Theaceae) based on chloroplast and nuclear DNA sequences. Front. Plant Sci. 8, 718. https://doi.org/10.3389/fpls.2017.00718. Wright, S., 1931. Evolution in Mendelian populations. Genetics 16, 97-159. Xi, Z., Ruhfel, B.R., Schaefer, H., et al., 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc.Natl. Acad. Sci. U. S. A. 109, 17519-17524. https://doi.org/10.1073/pnas.1205818109. Xie, D.Z., Ya, Z.G., Han, J.Y., et al., 2014. Study of distribution and protection strategies of Camellia tianeensis. J. Green Sci. Technol. 89-91. Yang, Y., Pan, Y., Gong, X., et al., 2010. Genetic variation in the endangered Rutaceae species Citrus hongheensis based on ISSR fingerprinting. Genet. Resour. Crop Evol. 57, 1239-1248. https://doi.org/10.1007/s10722-010-9571-7. Yao, M.-Z., Ma, C.-L., Qiao, T.-T., et al., 2012. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet.Genomes 8, 205-220. https://doi.org/10.1007/s11295-011-0433-z. Yoichi, W., Tomaru, N., 2014. Patterns of geographic distribution have a considerable influence on population genetic structure in one common and two rare species of Rhododendron (Ericaceae). Tree Genet. Genomes 10, 827-837. https://doi.org/10.1007/s11295-014-0723-3. Zaya, D.N., Molano-Flores, B., Feist, M.A., et al., 2017. Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae). Conserv. Genet. 18, 171-180. https://doi.org/10.1007/s10592-016-0891-9. Zhao, D., Yang, J., Yang, S., et al., 2014. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.BMC Plant Biol. 12. |
[1] | Yu-Juan Zhao, Gen-Shen Yin, Xun Gong. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation [J]. Plant Diversity, 2023, 45(05): 513-522. |
[2] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[3] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[4] | Moses C. Wambulwa, Peng-Zhen Fan, Richard Milne, Zeng-Yuan Wu, Ya-Huang Luo, Yue-Hua Wang, Hong Wang, Lian-Ming Gao, Zuo-Ying Xiahou, Ye-Chuan Jin, Lin-Jiang Ye, Zu-Chang Xu, Zhi-Chun Yang, De-Zhu Li, Jie Liu. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement [J]. Plant Diversity, 2022, 44(06): 530-541. |
[5] | Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm [J]. Plant Diversity, 2022, 44(05): 481-491. |
[6] | Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems [J]. Plant Diversity, 2022, 44(03): 231-242. |
[7] | Qiao-Ming Li, Chao-Nan Cai, Wu-Mei Xu, Min Cao, Li-Qing Sha, Lu-Xiang Lin, Tian-Hua He. Adaptive genetic diversity of dominant species contributes to species co-existence and community assembly [J]. Plant Diversity, 2022, 44(03): 271-278. |
[8] | Changkyun Kim, Dong-Kap Kim, Hang Sun, Joo-Hwan Kim. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea [J]. Plant Diversity, 2022, 44(02): 170-180. |
[9] | Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains [J]. Plant Diversity, 2022, 44(01): 30-38. |
[10] | Xiu-Jiao Zhang, Xiong-Fang Liu, De-Tuan Liu, Yu-Rong Cao, Zheng-Hong Li, Yong-Peng Ma, Hong Ma. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations [J]. Plant Diversity, 2021, 43(06): 472-479. |
[11] | Hong Qian, Yi Jin. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? [J]. Plant Diversity, 2021, 43(04): 255-263. |
[12] | Xinhui Li, Tao Yang, Dandan Wang. Phylogenetic and functional structures of succession in plant communities on mounds of Marmota himalayana in alpine regions on the northeast edge of the Qinghai-Tibet Plateau [J]. Plant Diversity, 2021, 43(04): 275-280. |
[13] | Yu-Long Yu, Hui-Chun Wang, Zhi-Xiang Yu, Johann Schinnerl, Rong Tang, Yu-Peng Geng, Gao Chen. Genetic diversity and structure of the endemic and endangered species Aristolochia delavayi growing along the Jinsha River [J]. Plant Diversity, 2021, 43(03): 225-233. |
[14] | Siyue Xiao, Yunheng Ji, Jian Liu, Xun Gong. Genetic characterization of the entire range of Cycas panzhihuaensis (Cycadaceae) [J]. Plant Diversity, 2020, 42(01): 7-18. |
[15] | Jian-Ling Guo, Wen-Juan Cao, Zhi-Min Li, Yong-Hong Zhang, Sergei Volis. Conservation implications of population genetic structure in a threatened orchid Cypripedium tibeticum [J]. Plant Diversity, 2019, 41(01): 13-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||