Plant Diversity ›› 2023, Vol. 45 ›› Issue (01): 20-26.DOI: 10.1016/j.pld.2022.05.006
• Articles • Previous Articles Next Articles
Li-Guo Zhanga, Xiao-Qian Lib, Wei-Tao Jina, Yu-Juan Liua, Yao Zhaoa, Jun Ronga, Xiao-Guo Xianga
Received:
2022-01-27
Revised:
2022-05-21
Published:
2023-02-23
Contact:
Xiao-Guo Xiang,E-mail:xiangxg2010@163.com
Supported by:
Li-Guo Zhang, Xiao-Qian Li, Wei-Tao Jin, Yu-Juan Liu, Yao Zhao, Jun Rong, Xiao-Guo Xiang. Asymmetric migration dynamics of the tropical Asian and Australasian floras[J]. Plant Diversity, 2023, 45(01): 20-26.
Add to citation manager EndNote|Ris|BibTeX
[1] Ali, J.R., Heaney, L.R., 2021. Wallace's line, Wallacea, and associated divides and areas:history of a tortuous tangle of ideas and labels. Biol. Rev. Camb. Phil. Soc. 96, 922-942 [2] Byrne, M., Steane, D.A., Joseph, L., et al., 2011. Decline of a biome:evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38, 1635-1656 [3] Carrillo, J.D., Faurby, S., Silvestro, D., et al., 2020. Disproportionate extinction of South American mammals drove the asymmetry of the Great American biotic interchange. Proc. Natl. Acad. Sci. U.S.A. 117, 26281-26287 [4] Crayn, D.M., Costion, C., Harrington, M.G., 2015. The Sahul-Sunda floristic exchange:dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J. Biogeogr. 42, 11-24 [5] Crisp, M.D., Cook, L.G., 2013. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44, 303-324 [6] de Boer, A.J., Duffels, J.P., 1996. Historical biogeography of the cicadas of Wallacea, new Guinea and the west pacific:a geotectonic explanation. Palaeogeogr. Palaeoclimat. Palaeoecol. 124, 153-177 [7] de Bruyn, M.D., Stelbrink, B., Morley, R.J., et al., 2014. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879-901 [8] Donoghue, M.J., Smith, S.A., 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1633-1644 [9] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973 [10] Gorog, A.J., Sinaga, M.H., Engstrom, M.D., 2004. Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (Maxomys surifer, Leopoldamys sabanus and Maxomys whiteheadi). Biol. J. Linn. Soc. 81, 91-109 [11] Grudinski, M., Wanntorp, L., Pannell, C.M., et al., 2014. West to east dispersal in a widespread animal-dispersed woody angiosperm genus (Aglaia, Meliaceae) across the Indo-Australian Archipelago. J. Biogeogr. 41, 1149-1159 [12] Hall, R., 1998. The plate tectonics of Cenozoic SE Asia and the distribution of land, in:Hall, R., Holloway, J.D. (eds.), Biogeography and Geological Evolution of SE Asia. The Netherlands:Backhuys Publishers, Leiden, pp. 99-131 [13] Hall, T.A., 1999. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98 [14] Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computerbased reconstructions, model and animations. J. Asian Earth Sci. 20, 353-434 [15] Hall, R., 2011. Australia-SE Asia collision:plate tectonics and crustal flow. Geol. Soc. Spec. Publ. 355, 75-109 [16] Hall, R., 2012. Sundaland and Wallacea:geology, plate tectonics and palaeogeography. In:Gower, D.J., Johnson, K.G., Richardson, B.R. (Eds.), et al., Biotic evolution and environmental change in Southeast Asia. The Systematics Association, Cambridge University Press, pp. 32-78 [17] Hall, R., 2013. The palaeogeography of Sundaland and Wallacea since the late jurassic. J. Limnol. 72, 1-17 [18] Hooker, J.D.S., 1859. On the Flora of Australia, its Origin, Affinities and Distribution; Being an Introductory Essay to the Flora of Tasmania. Lovell Reeve, London [19] James, N.A., Matteson, D.S., 2014. ecp:an R package for nonparametric multiple change point analysis of multivariate data. J. Stat. Software 62, 1-25 [20] Jaramillo, C., 2018. Evolution of the Isthmus of Panama:biological, palaeoceanographic and palaeoclimatological implications, in:Hoorn, C.P.A., Antonelli, A. (eds.), Mountains, Climate and Biodiversity, John Wiley and Sons, New Jersey, pp. 323-338 [21] Jiang, D.C., Sebastian, K., Zhang, Y.P., et al., 2019. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl. Sci. Rev. 6, 739-745 [22] Klaus, S., Morley, R.J., Plath, M., et al., 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 [23] Lieberma, B.S., 2005. Geobiology and paleobiogeography:tracking the coevolution of the Earth and its biota. Palaeogeogr. Palaeoclimat. Palaeoecol. 219, 23-33 [24] Liu, B., Le, C.T., Barrett, R.L., et al., 2018. Historical biogeography of Loranthaceae (Santalales):diversification agrees with emergence of tropical forests and radiation of songbirds. Mol. Phylogenet. Evol. 124, 199-212 [25] Lohman, D.J., de Bruyn, M., Page, T., et al., 2011. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205-226 [26] Lomolino, M.V., Riddle, B.R., Brown, J.H., 2006. Biogeography (3th edition). Sinauer Associates, Inc. Publishers, Sunderland (Massachusetts) [27] Maddison, W.P., Maddison, D.R., 2014. Mesquite:a modular system for evolutionary analysis. Version 3.01.[online]. Available at:http://mesquiteproject.org [28] Manchester, S.R., Tiffney, B.H., 2001. Integration of paleobotanical and neobotanical data in the assessment of phytogeographic history of Holarctic angiosperm clades. Int. J. Plant Sci. 162, S19-S27 [29] Manchester, S.R., Chen, Z.D., Lu, A.M., et al., 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J. Systemat. Evol. 47, 1-42 [30] Metcalfe, I., 1998. Palaeozoic and Mesozoic geological evolution of the SE Asian region:multidisciplinary constraints and implications for biogeography, in:Hall, R., Holloway, J.D. (eds.), Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, Leiden, pp. 25-41 [31] Miller, K.G., Browning, J.V., Schmelz, W.J., et al., 2020. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 [32] Mittermeier, R.A., Fonseca, P., Gil, R., et al., 2005. Hotspots Revisited:Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions. Cermex [33] Pagel, M., Meade, A., Barker, D., 2004. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673-684 [34] Parmar, G., Dang, V.C., Rabarijaona, R.N., et al., 2021. Phylogeny, character evolution and taxonomic revision of Causonis, a segregate genus from Cayratia (Vitaceae). Taxon 70, 1188-1218 [35] Peng, D.X., Dang, V.C., Habib, S., et al., 2021. Historical biogeography of Tetrastigma (Vitaceae):insights into floristic exchange patterns between Asia and Australia. Cladistics 37, 803-815 [36] Phoon, S.N., 2015. Systematics and Biogeography of Elaeocarpus (Elaeocarpaceae). Doctoral Dissertation, James Cook University [37] Rambaut, A., Drummond, A.J., 2007. Tracer v1.5[online]. Available online at:http://beast.bio.ed.ac.uk/Tracer (accessed November 30, 2009) [38] Raven, P.H., Axelrod, D.I., 1974. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61, 539-673 [39] Richardso, J.E., Costion, C.M., Muellner, A.N., 2012. The Malesian floristic interchange:plant migration patterns across Wallace's Line, in:Gower, D., John K., Richardson, J., Rosen, B., Ruber, L., Williams, S. (Eds.), Biotic Evolution and Environmental Change in Southeast Asia, Cambridge University Press, Cambridge, pp. 138-163 [40] Schwartz, T., Nylinder, S., Ramadugu, C., et al., 2016. The origin of oranges:a multi-locus phylogeny of Rutaceae subfamily Aurantioideae. Syst. Bot. 40, 1053-1062 [41] Sniderman, J.M.K., Jordan, G.J., 2011. Extent and timing of floristic exchange between Australian and Asian rain forests. J. Biogeogr. 38, 1445-1455 [42] Sniderman, J.M.K., Pillans, B., O'Sullivan, P.B., et al., 2007. Climate and vegetation in southeastern Australia respond to Southern Hemisphere insolation forcing in the late Pliocene-early Pleistocene. Geology 35, 41-44 [43] Stelbrink, B., Albrecht, C., Hall, R., et al., 2012. The biogeography of Sulawesi revisited:is there evidence for a vicariant origin of taxa on Wallace's "anomalous island"? Evolution 66, 2252-2271 [44] Szekely, G.J., Rizzo, M.L., 2005. Hierarchical clustering via joint between-within distances:extending Ward's minimum variance method. J. Classif. 22, 151-183 [45] Thornhill, A.H., Mishler, B.D., Knerr, N.J., et al., 2016. Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J. Biogeogr. 43, 2085-2098 [46] Tiffney, B.H., 1985. Perspectives on the origin of the ?oristic similarity between Eastern Asia and eastern North America. J. Arnold Arbor. 66, 73-94 [47] Truswell, E., Kershaw, A., Sluiter, I., 1987. The Australian-south-east Asian connection:evidence from the palaeobotanical record, Biogeographical evolution of the Malay Archipelago, in:Whitmore, T.C. (ed.), Biogeographical Evolution of the Malay Archipelago, Oxford University Press, New York, pp. 32-49 [48] Vermeij, G.J. 1991. When biotas meet:understanding biotic interchange. Science 253, 1099-1104 [49] Wallace, A.R., 1857. On the natural history of the Aru Islands. Ann. Mag. Nat. Hist. 20, 473-485 [50] Wen, J., Ickert-Bond, S.M., 2009. Evolution of the madrean-tethyan disjunctions and the North and South American amphitropical disjunctions in plants. J. Systemat. Evol. 47, 331-348 [51] Wolfe, J.A., Toshimasa, T., 1980. The Miocene Seldovia Point Flora from the Kenai Group, Alaska. United States Government Printing Office, Washington [52] Wu, Z.Y., Sun, H., Zhou, Z.H., et al., 2011. Floristics of Seed Plants from China. Science Press, Beijing [53] Wu, X.K., Liu, X.Y., Kodrul, T., et al., 2019. Dacrycarpus pattern shedding new light on the early floristic exchange between Asia and Australia. Natl. Sci. Rev. 6, 1086-1090 [54] Xiang, Q.Y., Soltis, D.E., Soltis, P.S., et al., 2000. Timing the eastern Asian-eastern North American floristic disjunction:molecular clock corroborates paleontological estimates. Mol. Phylogenet. Evol. 15, 462-472 [55] Yap, J.-Y. S., Rossetto, M., Costion, C., et al., 2018. Filters of floristic exchange:how traits and climate shape the rain forest invasion of Sahul from Sunda. J. Biogeogr. 45, 838-847 [56] Yap, J.-Y.S., van der Merwe, M., Ford, A.J., et al., 2020. Biotic exchange leaves detectable genomic patterns in the Australian rain forest flora. Biotropica 52, 627-635 [57] Yu, Y., Harris, A.J., Blair, C., et al., 2015. RASP (reconstruct ancestral state in phylogenies):a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46-49 [58] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693 |
[1] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae) [J]. Plant Diversity, 2023, 45(05): 501-512. |
[2] | Korina Ocampo-Zuleta, Ángela Parrado-Rosselli. Functional diversity in an Andean subpáramo affected by wildfire in Colombia [J]. Plant Diversity, 2023, 45(04): 385-396. |
[3] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae) [J]. Plant Diversity, 2023, 45(01): 6-19. |
[4] | Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains [J]. Plant Diversity, 2023, 45(01): 80-97. |
[5] | Changkyun Kim, Dong-Kap Kim, Hang Sun, Joo-Hwan Kim. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea [J]. Plant Diversity, 2022, 44(02): 170-180. |
[6] | Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains [J]. Plant Diversity, 2022, 44(01): 30-38. |
[7] | Hua Zhu, Peter Ashton, Bojian Gu, Shisun Zhou, Yunhong Tan. Tropical deciduous forest in Yunnan, southwestern China: Implications for geological and climatic histories from a little-known forest formation [J]. Plant Diversity, 2021, 43(06): 444-451. |
[8] | Lin-Bo Jia, Gi-Soo Nam, Tao Su, Gregory W. Stull, Shu-Feng Li, Yong-Jiang Huang, Zhe-Kun Zhou. Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants [J]. Plant Diversity, 2021, 43(06): 480-491. |
[9] | Feng-Wei Lei, Ling Tong, Yi-Xuan Zhu, Xian-Yun Mu, Tie-Yao Tu, Jun Wen. Plastid phylogenomics and biogeography of the medicinal plant lineage Hyoscyameae (Solanaceae) [J]. Plant Diversity, 2021, 43(03): 192-197. |
[10] | Yongquan Ren, Chengling Huang, Jiaming Zhang, Yongpeng Ma, Xiaoling Tian. Dispersal and germination of winged seeds of Brandisia hancei, a shrub in karst regions of China [J]. Plant Diversity, 2021, 43(03): 234-238. |
[11] | Ran Meng, Ying Meng, Yong-Ping Yang, Ze-Long Nie. Phylogeny and biogeography of Maianthemum (Asparagaceae: Nolinoideae) revisited with emphasis on its divergence pattern in SW China [J]. Plant Diversity, 2021, 43(02): 93-101. |
[12] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae) [J]. Plant Diversity, 2021, 43(01): 1-14. |
[13] | Rong Li, Lishen Qian, Hang Sun. Current progress and future prospects in phylofloristics [J]. Plant Diversity, 2018, 40(04): 141-146. |
[14] | Bang Feng, Zhuliang Yang. Studies on diversity of higher fungi in Yunnan, southwestern China: A review [J]. Plant Diversity, 2018, 40(04): 165-171. |
[15] | Frank Hauenschild, Adrien Favre, Jan Schnitzler, Ingo Michalak, Martin Freiberg, Alexandra N. Muellner-Riehl. Spatio-temporal evolution of Allium L. in the Qinghai-Tibet-Plateau region:Immigration and in situ radiation [J]. Plant Diversity, 2017, 39(04): 167-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||