Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 229-237.DOI: 10.1016/j.pld.2023.06.002
• Articles • Previous Articles Next Articles
Miao-Miao Lia,b,c, Muditha K. Meegahakumburaa,b,c,d, Moses C. Wambulwaa,b,c,e, Kevin S. Burgessf, Michael Möllerg, Zong-Fang Shena,c, De-Zhu Lib,c,h, Lian-Ming Gaoa,h
Received:
2023-03-07
Revised:
2023-06-01
Online:
2024-03-25
Published:
2024-04-07
Contact:
Lian-Ming Gao,E-mail:gaolm@mail.kib.ac.cn
Supported by:
Miao-Miao Li, Muditha K. Meegahakumbura, Moses C. Wambulwa, Kevin S. Burgess, Michael Möller, Zong-Fang Shen, De-Zhu Li, Lian-Ming Gao. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea (Camellia sinensis var. assamica)[J]. Plant Diversity, 2024, 46(02): 229-237.
Add to citation manager EndNote|Ris|BibTeX
[1] Anderson, E.C., Thompson, E.A. 2002. A model-based method for identifying species hybrids using multilocus genotypic data. Genetics 160, 1217-1229. [2] Chen, X.Y. 1986. The Original Locality of Tea Plant-Yunnan. Yunnan People Press, Kunming, pp.156. (In Chinese). [3] Dieringer, D., Schl?tterer, C., 2003. Microsatellite analyzer (MSA):a flatform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167-169. [4] Diez, C.M., Trujillo, I., Martinez-Urdiroz, N., et al., 2015. Olive domestication and diversification in mediterranean basin. New Phytol. 206, 436-447. [5] Earl, D.A., vonHoldt, B.A. 2012. Structure Harvester:a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359-361. [6] Evanno, G., Regnaut, S., Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Mol. Ecol. 14, 2611-2620. [7] Fang, W., Cheng, H., Duan, Y., et al., 2012. Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Systemat. Evol. 298, 469-483. [8] Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts. [9] Freeman, M., Ahmed, S. 2010. Tea Horse Road:Chi's Ancient Trade Route to Tibet. River Book Company, Bangkok, Thailand. [10] Fuchinour, Y. 1979. Analysis of self-incompatibility alleles of major varieties of tea. Jpn. Agric. Res. Q. 13, 43-48. [11] Goudet, J. 2002. FSTAT:a Programme to Estimate and Test Gene Diversities and Fixation Index. Version 2.9.3.2. [12] Huang, F., Duan, J., Lei, Y., Liu, Z., Kang, Y., et al., 2022. Genetic diversity, population structure and core collection analysis of Hunan tea plant germplasm through genotyping-by-sequencing. Beverage Plant Resear. 2, 5. [13] Ji, P.Z., Li, H., Gao, L.Z., et al., 2011. ISSR Diversity and genetic differentiation of ancient tea C. sinensis. var. assamica plantations from China. Pakistan J. Bot. 43, 281-291. [14] Kingdon-Ward, F. 1950. Does wild tea exists? Nature 165, 297-299. [15] Lee, K.J., Lee, J.R., Sebastin, R., et al., 2019. Assessment of genetic diversity of tea germplasm for its management and sustainable use in Korea Genebank. Forests 10, 780. [16] Lei, Y., Yang, L., Duan S. et al., 2022. Whole-genome resequencing reveals the origin of tea in Lincang. Front. Plant Sci. 10, 984422. [17] Li, M.M., Meegahakumbura, M.K., Yan, L.J., et al., 2015. Genetic involvement of Camellia taliensis in the domestication of Camellia sinensis var. assamica (Assamica Tea) revealed by nuclear microsatellite markers. Plant Divers. Resour. 37, 29-37. [18] Li, L., Hu, Y., He, M., et al., 2021. Comparative chloroplast genomes:insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genom. 22, 138. [19] Liu, C., Yu, W., Cai, C. et al., 2022. Genetic diversity of tea plant (Camellia sinensis (L.) Kuntze) germplasm resources in Wuyi Mountain of China based on Single Nucleotide Polymorphism (SNP) markers. Horticulture 8, 932. [20] Lu, H.Y., Zhang, J.P., Yang, Y.M., et al., 2016. Earliest tea as evidence for one branch of the silk road across the Tibetan Plateau. Sci. Rep. 6, 18955. [21] Lu, L., Chen, H., Wang, X. et al., 2021. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits. Hortic. Res. (Jpn.) 8, 190. [22] Meegahakumbura, M. K. 2016. Genetic Assessments of Asian Tea Germplasm and Domestication History of the Tea Plant (Camellia Sinensis (L.) O. Kuntze). University of Chinese Academy of Sciences, Beijing, China. [23] Meegahakumbura, M.K., Wambulwa, M.C., Thapa, K.K., et al., 2016. Indications for three independent domestication events for tea plant (Camellia sinensis (L.) O. Kuntze) and new insights into the origin of tea germplasm in China and India revealed by nuclear microsatellites. PLoS One 11, e0155369. [24] Meegahakumbura, M.K., Wambulwa, M.C., Li, M.M., et al., 2018a. Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India based on nuclear microsatellites and cpDNA sequence data. Front. Plant Sci. 8, 2270. [25] Meegahakumbura, M. K., Wambulwa, M. C., Li, D. Z., et al., 2018b. Preliminary investigations on the genetic relationships and origin of domestication of the tea plant (Camellia sinensis (L.)) using genotyping by sequencing. Trop. Agric. Res. 29, 230-240. [26] Ming, T.L. 2000. Monograph of the Genus Camellia. Yunnan Science and Technology Press, Kunming, China, pp. 110135. [27] Mondal, T..2009. "Tea breeding", in Breeding Plantation Tree Crops:Tropical Species, eds. S. M. Jain, and P. M. Priyadarshan (New York:Springer Science + Business Media), pp. 545-587. [28] Muramatsu, K. 1991. The Science of Tea. Asakura Publications, Japan, pp. 6-7. (in Japanese). [29] Nei, M., Tajima, F., Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153-170. [30] Peakall, R., Smouse P. 2006. GenALEx 6. Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295. [31] Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. [32] Rambaut, A. 2012. FigTree Version 1.4. http://tree.bio.ed.ac.uk/software/figtree/. [33] Rawal, H. C., Borchetia, S., Bera, B., et al., 2021. Comparative analysis of chloroplast genomes indicated different origin for Indian tea (Camellia assamica cv TV1) as compared to Chinese tea. Sci. Rep. 11, 110. [34] Stuart, C.P. 1919. A basis for tea selection. Bull. Jard. Bot. Buitenzorg 1, 193-320. [35] Van Oosterhout, C., Hutchinson, W.F., Wills, D.P., Shipley, P., 2004. MICRO-CHECKER:Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535-538. [36] Wambulwa, M.C., Meegahakumbura, M.K., Chalo, R., et al., 2016a. Nuclear microsatellites reveal the genetic architecture and breeding history of tea germplasm of East Africa. Tree Genet. Genomes 12, 11. [37] Wambulwa, M.C., Meegahakumbura, M.K., Kamunya, S., et al., 2016b. Insights into genetic relationships and breeding patterns of African tea germplasm based on nSSR and markers and cpDNA sequences. Front. Plant Sci. 7, 1244. [38] Wambulwa, M.C., Meegahakumbura, M.K., Kamunya, S. et al., 2017. Multiple origins and narrow genepool characterize African tea germplasm; concordant patterns revealed by nuclear and plastid DNA markers. Sci. Rep. 7, 4053. [39] Wambulwa, M.C., Meegahakumbura, M.K., Kamunya, S., et al., 2021. From the wild to cup:tracking the footprints of tea species in time and space. Front. Nutr. 8, 706770. [40] Wang, X., Feng, H., Chang, Y. et al., 2020. Population sequencing enhances the understanding of tea plant evolution. Nat. Commun. 11, 4447. [41] Wight, W. 1959. Nomenclature and classification of tea plant. Nature 183, 1726-1728. [42] Wight, W., Barua, P.K. 1957. What is tea? Nature 179, 506-507. [43] Xia, E.H., Zhang, H.B., Sheng, S. et al., 2017. The tea tree genome provides insides into tea flavor and independent evolution of caffeine biosynthesis. Mol. Plant 10, 866-877. [44] Yamanishi, T. 1995. Special issue on tea. Food Rev. Int. 11, 371-546. [45] Yao, M.Z., Ma, C.L., Qiao, T.T. et al., 2012. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genomes 8, 205-220. [46] Yu, F.L. 1986. Discussion on the originating place and the originating center of tea plants. J. Tea Sci. 6, 1-8. (in Chinese). [47] Yu, F., Chen, L. 2001. Indigenous wild tea Camellias in China. Proceedings of International Conference of O-Cha (Tea) Culture and Science Session II, pp. J1-J4. [48] Zhang, W., Zhang, Y., Qiu, H. et al., 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nat. Commun. 11, 3719. [49] Zhang, X., Chen, S., Shi, L. et al., 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 53, 1250-1259. [50] Zhao, F.R., Yin, Q.Y. 2008. The Khmer Meng nationalities in China earliest domesticated cultivated tea. J. Simao Teacher's College 24:28-34. [51] Zhao, D.W., Yang, J.B., Yang, S.X., et al., 2014. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. BMC Plant Biol. 14, 14. [52] Zhao, Y.C., Wang, R.Y., Liu, Q., et al., 2021. Genetic diversity of ancient Camellia sinensis (L.) O. Kuntze in Sandu county of Guizhou province in China. Diversity 13, 276. [53] Zhou, H.J. 2004. Yunnan Puer Tea. Yunnan Science and Technology Press, Kunming, pp. 18-21 (in Chinese). |
[1] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[2] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[3] | Moses C. Wambulwa, Peng-Zhen Fan, Richard Milne, Zeng-Yuan Wu, Ya-Huang Luo, Yue-Hua Wang, Hong Wang, Lian-Ming Gao, Zuo-Ying Xiahou, Ye-Chuan Jin, Lin-Jiang Ye, Zu-Chang Xu, Zhi-Chun Yang, De-Zhu Li, Jie Liu. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement [J]. Plant Diversity, 2022, 44(06): 530-541. |
[4] | Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm [J]. Plant Diversity, 2022, 44(05): 481-491. |
[5] | Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems [J]. Plant Diversity, 2022, 44(03): 231-242. |
[6] | Qiao-Ming Li, Chao-Nan Cai, Wu-Mei Xu, Min Cao, Li-Qing Sha, Lu-Xiang Lin, Tian-Hua He. Adaptive genetic diversity of dominant species contributes to species co-existence and community assembly [J]. Plant Diversity, 2022, 44(03): 271-278. |
[7] | Changkyun Kim, Dong-Kap Kim, Hang Sun, Joo-Hwan Kim. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea [J]. Plant Diversity, 2022, 44(02): 170-180. |
[8] | Xiu-Jiao Zhang, Xiong-Fang Liu, De-Tuan Liu, Yu-Rong Cao, Zheng-Hong Li, Yong-Peng Ma, Hong Ma. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations [J]. Plant Diversity, 2021, 43(06): 472-479. |
[9] | Hong Qian, Yi Jin. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? [J]. Plant Diversity, 2021, 43(04): 255-263. |
[10] | Yu-Long Yu, Hui-Chun Wang, Zhi-Xiang Yu, Johann Schinnerl, Rong Tang, Yu-Peng Geng, Gao Chen. Genetic diversity and structure of the endemic and endangered species Aristolochia delavayi growing along the Jinsha River [J]. Plant Diversity, 2021, 43(03): 225-233. |
[11] | Shuang Li, Shang-Li Liu, Si-Yu Pei, Man-Man Ning, Shao-Qing Tang. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers [J]. Plant Diversity, 2020, 42(05): 343-350. |
[12] | Siyue Xiao, Yunheng Ji, Jian Liu, Xun Gong. Genetic characterization of the entire range of Cycas panzhihuaensis (Cycadaceae) [J]. Plant Diversity, 2020, 42(01): 7-18. |
[13] | Jian-Ling Guo, Wen-Juan Cao, Zhi-Min Li, Yong-Hong Zhang, Sergei Volis. Conservation implications of population genetic structure in a threatened orchid Cypripedium tibeticum [J]. Plant Diversity, 2019, 41(01): 13-18. |
[14] | Shan He, Wei Xu, Fei Li, Yue Wang, Aizhong Liu. Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean [J]. Plant Diversity, 2017, 39(05): 300-307. |
[15] | Reyna Maya-García, Santiago Arizaga, Pablo Cuevas-Reyes, Juan Manuel Pe?aloza-Ramírez, Víctor Rocha Ramírez, Ken Oyama. Landscape genetics reveals inbreeding and genetic bottlenecks in the extremely rare short-globose cacti Mammillaria pectinifera (Cactaceae) as a result of habitat fragmentation [J]. Plant Diversity, 2017, 39(01): 13-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||