Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 283-293.DOI: 10.1016/j.pld.2024.04.002
• Articles •
Fangbing Lia,b, Hong Qianc, Jordi Sardansd,e,f, Dzhamal Y. Amishevg, Zixuan Wangh, Changyue Zhangh, Tonggui Wui, Xiaoniu Xuh, Xiao Taoh, Xingzhao Huanga,b,h
Received:
2024-01-09
Revised:
2024-04-01
Published:
2024-05-20
Contact:
Xingzhao Huang,E-mail:xingzhaoh@163.com
Supported by:
Fangbing Li, Hong Qian, Jordi Sardans, Dzhamal Y. Amishev, Zixuan Wang, Changyue Zhang, Tonggui Wu, Xiaoniu Xu, Xiao Tao, Xingzhao Huang. Evolutionary history shapes variation of wood density of tree species across the world[J]. Plant Diversity, 2024, 46(03): 283-293.
Add to citation manager EndNote|Ris|BibTeX
[1] Adan, M., Tonnang, H.E.Z., Greve, K., et al., 2023. Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa. Geocarto Int. 38, 1-15. [2] Baker, T.R., Phillips, O.L., Malhi, Y., et al., 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol. 10, 545-562. [3] Beech, E., Rivers, M., Oldfield, S., et al., 2017. Global Tree Search:The first complete global database of tree species and country distributions. J. Sustainable For. 36, 454-489. [4] Bellard, C., Bertelsmeier, C., Leadley, P., et al., 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365-377. [5] Boelman, N.T., Stieglitz, M., Rueth, H.M., et al., 2003. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 135, 414-421. [6] Bond, W.J., 1989. The tortoise and the hare:ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227-249. [7] Borg, Z.D., Lathrop, M., Goodwin, M., et al., 2013. Global change biology. Am. J. Respir. Crit. Care Med. 187, 264-272. [8] Bouriaud, O., Breda, N., Le Moguedec, G., et al., 2004. Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees-Struct. Funct. 18, 264-276. [9] Brodribb, T.J., Pittermann, J., Coomes, D.A., 2012. Elegance versus speed:examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673-694. [10] Bukoski, J.J., Cook-Patton, S.C., Melikov, C., et al., 2022. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nat. Commun. 13, 4206. [11] Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference:A Practical Information-Theoretic Approach. New York:Springer. [12] Bytebier, J., De Mil, T., Vanhellemont, M., et al., 2022. Linking wood density records of common beech (Fagus sylvatica L.) with temperature and precipitation variability from a temperate lowland site. Dendrochronologia 76, 1-10. [13] Cabrera-Bosquet, L., Molero, G., Stellacci, A.M., et al., 2011. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Res. Commun. 39, 147-159. [14] Cadotte, M.W., Tucker, C.M., 2017. Should environmental filtering be abandoned?Trends Ecol. Evol. 32, 429-437. [15] Camarero, J., Fernandez-Perez, L., Kirdyanov, A.V., et al., 2017. Minimum wood density of conifers portrays changes in early season precipitation at dry and cold Eurasian regions. Trees-Struct. Funct. 31, 1423-1437. [16] Carlquist, S., 1975. Ecological strategies of xylem evolution. University of California Press, Berkeley, California, USA. [17] Cavender-Bares, J., Kitajima, K., Bazzaz, F.A., 2004. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol. Monogr. 74, 635-662. [18] Chave, J., Andalo, C., Brown, S., et al., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99. [19] Chave, J., Coomes, D., Jansen, S., et al., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351-366. [20] Chave, J., Muller-Landau, H.C., Baker, T.R., et al., 2006. Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecol. Appl. 16, 2356-2367. [21] Choat, B., Jansen, S., Brodribb, T.J., et al., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752-755. [22] Cielo-Filho, R., 2021. Drought severity, disturbance intensity and wood density of dominant and rare tree species in Brazilian seasonally dry semideciduous forests. Flora 274, 151733. [23] Colgan, M.S., Swemmer, T., Asner, G.P., 2014. Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees-Struct. Funct. 28, 91-102. [24] Conrad, O., Bechtel, B., Bock, M., et al., 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991-2007. [25] Diaconu, D., Wassenberg, M., Spiecker, H., 2016. Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect. For. Ecosyst. 3, 6. [26] Enquist, B.J., West, G.B., Charnov, E.L., et al., 1999. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907-911. [27] Fajardo, A., Piper, F.I., Garcia-Cervigon, A.I., 2022. The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Funct. Ecol. 36, 1585-1598. [28] Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125, 1-15. [29] Flores, O., Coomes, D.A., 2011. Estimating the wood density of species for carbon stock assessments. Methods Ecol. Evol. 2, 214-220. [30] Greenwood, S., Ruiz-Benito, P., Martinez-Vilalta, J., et al., 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539-553. [31] Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169-1194. [32] Gusewell, S., 2004. N:P ratios in terrestrial plants:variation and functional significance. New Phytol. 164, 243-266. [33] Gusewell, S., Bailey, K.M., Roem, W.J., et al., 2005. Nutrient limitation and botanical diversity in wetlands:can fertilisation raise species richness?Oikos 109, 71-80. [34] Hacke, U.G., Sperry, J.S., Pockman, W.T., et al., 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457-461. [35] Hadfield, J.D., 2010. MCMC methods for multi-response generalized linear mixed models:The MCMCglmm R package. J. Stat. Softw. 33, 1-22. [36] Hardin, J.W., Leopold, D.J., White, F.M., 2001. Harlow& Harrar's textbook of dendrology. McGraw-Hill, Boston. [37] Hengl, T., Mendes de Jesus, J., Heuvelink, G.B., et al., 2017. SoilGrids250m:Global gridded soil information based on machine learning. PLoS One 12, e0169748. [38] Hietz, P., Valencia, R., Wright, S.J., 2013. Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests. Funct. Ecol. 27, 684-692. [39] Huang, X., Li, F., Wang, Z., et al., 2023a. Are allometric model parameters of aboveground biomass for trees phylogenetically constrained?Plant Divers. 45, 229-233. [40] Huang, X., Lu, Z., Xu, X., et al., 2023b. Global distributions of foliar nitrogen and phosphorus resorption in forest ecosystems. Sci. Total Environ. 871, 162075. [41] Ibanez, T., Chave, J., Barrabe, L., et al., 2017. Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical island. J. Veg. Sci. 28, 19-33. [42] Ihaka, R., Gentleman, R., 1996. R:a language for data analysis and graphics. J. Comput. Graphical Stat. 5, 299-314. [43] Jin, Y., Qian, H., 2023. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals. Plant Divers. 45, 347-352. [44] Johnson, D.M., McCulloh, K.A., Woodruff, D.R., et al., 2012. Hydraulic safety margins and embolism reversal in stems and leaves:Why are conifers and angiosperms so different?Plant Sci. 195, 48-53. [45] Kattge, J., Bonisch, G., Diaz, S., et al., 2020. TRY plant trait database-enhanced coverage and open access. Global Change Biol. 26, 119-188. [46] Kerfriden, B., Bontemps, J.D., Leban, J.M., 2021. Variations in temperate forest stem biomass ratio along three environmental gradients are dominated by interspecific differences in wood density. Plant Ecol. 222, 289-303. [47] Kim, H.K., Park, J., Hwang, I., 2014. Investigating water transport through the xylem network in vascular plants. J. Exp. Bot. 65, 1895-1904. [48] Kimberley, M.O., McKinley, R.B., Cown, D.J., et al., 2017. Modelling the variation in wood density of New Zealand-grown Douglas-fir. N. Z. J. For. Sci. 47, 15. [49] Kimmins, J.P., 2004. Forest Ecology, 3rd edn. Prentice Hall, Upper Saddle River, New Jersey. [50] Kohler, P., Ditzer, T., Huth, A., 2000. Concepts for the aggregation of tropical tree species into functional types and the application to Sabah's lowland rain forests. J. Trop. Ecol. 16, 591-602. [51] Kurz-Besson, C.B., Lousada, J.L., Gaspar, M.J., et al., 2016. Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in Southern Portugal. Front. Plant Sci. 7, 1170. [52] Lee, A., Lucas, R., Brack, C., 2004. Quantifying vertical forest stand structure using small footprint lidar to assess potential stand dynamics. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVI-8/W2, 213-216. [53] Li, X., Wu, H.X., Southerton, S.G., 2012. Identification of putative candidate genes for juvenile wood density in Pinus radiata. Tree Physiol. 32, 1046-1057. [54] Liang, X., Ye, Q., Liu, H., et al., 2021. Wood density predicts mortality threshold for diverse trees. New Phytol. 229, 3053-3057. [55] Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R news 2, 18-22. [56] Lu, L.-M., Mao, L.-F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. [57] Lugo, A.E., Scatena, F.N., 1996. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28, 585-599. [58] MacFarlane, D.W., 2020. Functional relationships between branch and stem wood density for temperate tree species in North America. Front. For. Global Change 3, 1-16. [59] Maynard, D.S., Bialic-Murphy, L., Zohner, C.M., et al., 2022. Global relationships in tree functional traits. Nat. Commun. 13, 3185. [60] McGill, B.J., Enquist, B.J., Weiher, E., et al., 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178-185. [61] Meinzer, F.C., 2003. Functional convergence in plant responses to the environment. Oecologia 134, 1-11. [62] Molina-Venegas, R., Rodriguez, M.A., 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information?BMC Evol. Biol. 17, 53. [63] Moritz, C., Faith, D.P., 2002. Comparative phylogeography and the identification of genetically divergent areas for conservation. Mol. Ecol. 7, 419-429. [64] Muller-Landau, H.C., 2004. Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36, 20-32. [65] Munkemuller, T., Lavergne, S., Bzeznik, B., et al., 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743-756. [66] Nabais, C., Hansen, J.K., David-Schwartz, R., et al., 2018. The effect of climate on wood density:What provenance trials tell us?For. Ecol. Manag. 408, 148-156. [67] Nyari, A.S., Reddy, S., 2013. Comparative phyloclimatic analysis and evolution of ecological niches in the scimitar babblers (Aves:Timaliidae:Pomatorhinus). PLoS One 8, e55629. [68] Ogle, K., Pathikonda, S., Sartor, K., et al., 2014. A model-based meta-analysis for estimating species-specific wood density and identifying potential sources of variation. J. Ecol. 102, 194-208. [69] Oliveira, G.M.V., de Mello, J.M., de Mello, C.R., et al., 2021. Behavior of wood basic density according to environmental variables. J. For. Res. 33, 497-505. [70] Onoda, Y., Richards, A.E., Westoby, M., 2010. The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol. 185, 493-501. [71] Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. [72] Pandey, S., 2021. Climatic influence on tree wood anatomy:a review. J. Wood Sci. 67, 24. [73] Penuelas, J., Fernandez-Martinez, M., Ciais, P., et al., 2019. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, e02652. [74] Pettorelli, N., Ryan, S., Mueller, T., et al., 2011. The Normalized Difference Vegetation Index (NDVI):unforeseen successes in animal ecology. Clim. Res. 46, 15-27. [75] Phillips, O.L., Sullivan, M.J.P., Baker, T.R., et al., 2019. Species matter:wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 40, 913-935. [76] Pinsky, M.L., 2019. Species coexistence through competition and rapid evolution. Proc. Natl. Acad. Sci. U.S.A. 116, 2407-2409. [77] Pinzon, J.E., Tucker, C.J., 2014. A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series, Remote Sens., pp. 6929-6960. [78] Poorter, L., McDonald, I., Alarcon, A., et al., 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481-492. [79] Pratt, R.B., Jacobsen, A.L., Ewers, F.W., et al., 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174, 787-798. [80] Putz, F.E., Coley, P.D., Lu, K., et al., 1983. Uprooting and snapping of trees:structural determinants and ecological consequences. Can. J. For. Res. 13, 1011-1020. [81] Qian, H., Deng, T., Sun, H., 2019. Global and regional tree species diversity. J. Plant Ecol. 12, 210-215. [82] Qian, H., Zhang, J., 2014. Using an updated time-calibrated family-level phylogeny of seed plants to test for non-random patterns of life forms across the phylogeny. J. Syst. Evol. 52, 423-430. [83] R Core Team, 2013. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [84] Revell, L.J., 2012. phytools:an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. [85] Ricklefs, R.E., 2008. The Economy of Nature. W. H. Freeman. [86] Sardans, J., Vallicrosa, H., Zuccarini, P., et al., 2021. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat. Ecol. Evol. 5, 184-194. [87] Savva, Y., Koubaa, A., Tremblay, F., et al., 2010. Effects of radial growth, tree age, climate, and seed origin on wood density of diverse jack pine populations. Trees-Struct. Funct. 24, 53-65. [88] Serra-Maluquer, X., Gazol, A., Anderegg, W.R.L., et al., 2022. Wood density and hydraulic traits influence species'growth response to drought across biomes. Global Change Biol. 28, 3871-3882. [89] Sette Jr, C.R., Tomazello Fo, M., Lousada, J.L., et al., 2016. Relationship between climate variables, trunk growth rate and wood density of Eucalyptus grandis W. Mill ex Maiden trees. Rev. Arvore 40, 337-346. [90] Smith, S.A., Donoghue, M.J., 2010. Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera(Caprifoliaceae, Dipsacales). Syst Biol. 59, 322-341. [91] Stegen, J.C., Swenson, N.G., Valencia, R., et al., 2009. Above-ground forest biomass is not consistently related to wood density in tropical forests. Glob. Ecol. Biogeogr. 18, 617-625. [92] Stoehr, M.U., Ukrainetz, N.K., Hayton, L.K., et al., 2009. Current and future trends in juvenile wood density for coastal Douglas-fir. Can. J. For. Res. 39, 1415-1419. [93] Swenson, N.G., Enquist, B.J., 2007. Ecological and evolutionary determinants of a key plant functional trait:wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451-459. [94] ter Steege, H., Hammond, D.S., 2001. Character convergence, diversity, and disturbance in tropical rain forest in Guyana. Ecology 82, 3197-3212. [95] Thomas, D.S., Montagu, K.D., Conroy, J.P., 2004. Changes in wood density of Eucalyptus camaldulensis due to temperature-the physiological link between water viscosity and wood anatomy. For. Ecol. Manag. 193, 157-165. [96] Tucker, C.J., Pinzon, J.E., Brown, M.E., et al., 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485-4498. [97] Uhl, C., Jordan, C.F., 1984. Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology 65, 1476-1490. [98] Vallicrosa, H., Sardans, J., Maspons, J., et al., 2022. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Glob. Ecol. Biogeogr. 31, 861-871. [99] Vicente-Serrano, S.M., Camarero, J.J., Olano, J.M., et al., 2016. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sens. Environ. 187, 14-29. [100] Wang, H., Zhu, A., Duan, A., et al., 2022. Responses to subtropical climate in radial growth and wood density of Chinese fir provenances, southern China. For. Ecol. Manag. 521, 120428. [101] Wang, Z., Huang, X., Li, F., et al., 2023. Global patterns of allometric model parameters prediction. Sci. Rep. 13, 1550. [102] Wani, A.A., Bhat, A.F., Gatoo, A.A., et al., 2021. Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas. Mitigation Adapt. Strategies Global Change 26, 1. [103] Weiher, E., Keddy, P.A., 1995. Assembly rules, null models, and trait dispersion:new questions from old patterns. Oikos 74, 159-164. [104] Westoby, M., Wright, I.J., 2006. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261-268. [105] Whittaker, R.H., 1975. Communities and Ecosystems. MacMillan Publishing Company, Inc., New York. [106] Wickham, H., 2011. ggplot2. WIREs Comput. Stat. 3, 180-185. [107] Wiemann, M.C., Williamson, G.B., 2002. Geographic variation in wood specific gravity:Effects of latitude, temperature, and precipitation. Wood Fiber Sci. 34, 96-107. [108] Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639-644. [109] Wright, S.J., Muller-Landau, H.C., Condit, R., et al., 2003. Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84, 3174-3185. [110] Wu, G., Wiens, J.J., 2022. The origins of climate-diversity relationships and richness patterns in Chinese plants. Ecol. Evol. 12, e9607. [111] Yang, H., Wang, S., Son, R., et al., 2024. Global patterns of tree wood density. Global Change Biol. 30, e17224. [112] Yu, Q., Elser, J.J., He, N., et al., 2011. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166, 1-10. [113] Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., et al., 2009. Data from:Towards a worldwide wood economics spectrum[Global wood density database]. Dryad, https://doi.org/10.5061/dryad.234. [114] Zhang, J., Qian, H., 2023. U.Taxonstand:An R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1-5. [115] Zhang, S., Slik, J.W.F., Zhang, J., et al., 2011. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob. Ecol. Biogeogr. 20, 241-250. |
[1] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes) [J]. Plant Diversity, 2023, 45(06): 630-684. |
[2] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae) [J]. Plant Diversity, 2023, 45(05): 501-512. |
[3] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
[4] | Hong Qian. Intercontinental comparison of phylogenetic relatedness in introduced plants at the transition from naturalization to invasion: A case study on the floras of South Africa and China [J]. Plant Diversity, 2023, 45(04): 363-368. |
[5] | Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China [J]. Plant Diversity, 2023, 45(03): 284-301. |
[6] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals [J]. Plant Diversity, 2023, 45(03): 347-352. |
[7] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae) [J]. Plant Diversity, 2023, 45(01): 6-19. |
[8] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae) [J]. Plant Diversity, 2023, 45(01): 54-68. |
[9] | Hong-Hu Meng, Can-Yu Zhang, Shook Ling Low, Lang Li, Jian-Yong Shen, Nurainas, Yu Zhang, Pei-Han Huang, Shi-Shun Zhou, Yun-Hong Tan, Jie Li. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae) [J]. Plant Diversity, 2022, 44(06): 552-564. |
[10] | Yi Jin, Hong Qian. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants [J]. Plant Diversity, 2022, 44(04): 335-339. |
[11] | Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang. Recent advances on phylogenomics of gymnosperms and a new classification [J]. Plant Diversity, 2022, 44(04): 340-350. |
[12] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data [J]. Plant Diversity, 2022, 44(03): 300-307. |
[13] | Lei Huang, Fang-Dong Geng, Jing-Jing Fan, Wei Zhai, Cheng Xue, Xiao-Hui Zhang, Yi Ren, Ju-Qing Kang. Evidence for two types of Aquilegia ecalcarata and its implications for adaptation to new environments [J]. Plant Diversity, 2022, 44(02): 153-162. |
[14] | Zheng-Yu Zuo, Ting Zhao, Xin-Yu Du, Yun Xiong, Jin-Mei Lu, De-Zhu Li. A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species [J]. Plant Diversity, 2022, 44(02): 181-190. |
[15] | Zhen-Yu Lv, Ziyoviddin Yusupov, Dai-Gui Zhang, Ya-Zhou Zhang, Xiao-Shuang Zhang, Nan Lin, Komiljon Tojibaev, Hang Sun, Tao Deng. Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China [J]. Plant Diversity, 2022, 44(02): 222-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||