Plant Diversity ›› 2017, Vol. 39 ›› Issue (05): 233-244.DOI: 10.1016/j.pld.2017.09.001
• Reviews • 下一篇
Robert A. Spicera,b
收稿日期:
2017-07-30
修回日期:
2017-09-06
出版日期:
2017-10-25
发布日期:
2021-11-05
通讯作者:
Robert A. Spicer
Robert A. Spicera,b
Received:
2017-07-30
Revised:
2017-09-06
Online:
2017-10-25
Published:
2021-11-05
Contact:
Robert A. Spicer
摘要: Prevailing dogma asserts that the uplift of Tibet, the onset of the Asian monsoon system and high biodiversity in southern Asia are linked, and that all occurred after 23 million years ago in the Neogene. Here, spanning the last 60 million years of Earth history, the geological, climatological and palaeontological evidence for this linkage is reviewed. The principal conclusions are that:1) A proto-Tibetan highland existed well before the Neogene and that an Andean type topography with surface elevations of at least 4.5 km existed at the start of the Eocene, before final closure of the Tethys Ocean that separated India from Eurasia. 2) The Himalaya were formed not at the start of the IndiaeEurasia collision, but after much of Tibet had achieved its present elevation. The Himalaya built against a pre-existing proto-Tibetan highland and only projected above the average height of the plateau after approximately 15 Ma. 3) Monsoon climates have existed across southern Asia for the whole of the Cenozoic, and probably for a lot longer, but that they were of the kind generated by seasonal migrations of the Inter-tropical Convergence Zone. 4) The projection of the High Himalaya above the Tibetan Plateau at about 15 Ma coincides with the development of the modern South Asia Monsoon. 5) The East Asia monsoon became established in its present form about the same time as a consequence of topographic changes in northern Tibet and elsewhere in Asia, the loss of moisture sources in the Asian interior and the development of a strong winter Siberian high as global temperatures declined. 6) New radiometric dates of palaeontological finds point to southern Asia's high biodiversity originating in the Paleogene, not the Neogene.
Robert A. Spicer. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related?[J]. Plant Diversity, 2017, 39(05): 233-244.
Robert A. Spicer. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related?[J]. Plant Diversity, 2017, 39(05): 233-244.
An, Z.S., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times.Nature 411, 62-66. Boos, W.R., Kuang, Z., 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218-222. Bosboom, R., Dupont-Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Huang, W., Yang, W., Guo, Z., Krijgsman, W., 2014. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res. 26, 621-640. Burg, J.P., Chen, G.M., 1984. Tectonics and structural zonation of southern Tibet, China. Nature 311, 219-223. Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for eastewest extension. Nature 374, 49-52. Cowie, R.H., Holland, B.S., 2008. Molecular biogeography and diversification of the endemic terrestrial fauna of the Hawaiian Islands. Philos. Trans. Roy. Soc. B Biol.Sci. 363, 3363-3376. Croll, J., 1875. Climate and Time in their Geological Relations; a Theory of Secular Changes of the Earth's Climate. D. Appleton and Company, New York. Currie, B.S., Polissar, P.J., Rowley, D., Ingals, M., Li, S., Olack, G., Freeman, K.H., 2016.Multiproxy palaeoaltimetry of the Late OligoceneePliocene Oiyug Basin, Southern Tibet. Am. J. Sci. 316, 401-436. Currie, B.S., Rowley, D., Tabor, N.J., 2005. Middle Miocene paleoaltimetry of southern Tibet: implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology 33. Cyr, A.J., Currie, B.S., Rowley, D., 2005. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, North-Central Tibet: implications for the paleoaltimetry of the Eocene Tibetan Plateau. J. Geol. 113, 517-533. Darwin, C., 1860. Naturalist's Voyage Around the World. John Murray, London. Deng, T., Wang, S.Q., Xie, G.P., Li, Q., Hou, S.K., Sun, B.Y., 2011. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin. Sci. Bull. 56, 2873-2880. Derry, L.A., France Lanord, C., 1996. Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet. Sci. Lett. 142, 59-74. Dewey, J.F., Cande, S., Pitman, W.C., 1989. Tectonic evolution of the India/Eurasia collision zone. Eclogae Geol. Helv. 82, 717-734. Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer, T.E.V., Yue, Y., Shukla, A., Srivastava, G., Khan, M.A., Bera, S., Mehrotra, R.C., 2017.Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45, 215-218. Ding, L., Xu, Q., Yue, Y.H., Wang, H.Q., Cai, F.I., Li, S.Q., 2014. The Andean-type Gangdese Mountains: paleoelevation record from the PaleoceneeEocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250-264. Ding, Z.L., Liu, T.S., Rutter, N.W., Yu, Z.W., Guo, Z.T., Zhu, R.X., 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quat.Res. 44, 149-159. Dodge, N., 1943. Monument in the mountain. Arizona Highways 19, 20-28. Emerson, B.C., 2008. Speciation on islands: what are we learning? Biol. J. Linn. Soc. 95, 47-52. England, P., Houseman, G.A., 1989. Extension during continental convergence, with application to the Tibetan Plateau. J. Geophys. Res. 94, 17561-17579. England, P.C., Searle, M.P., 1986. The CretaceouseTertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet. Tectonics 5, 1-14. Favre, A., Packert, M., Pauls, S.U., Jahnig, S.C., Uhl, D., Michalak, I., MuellnerRiehl, A.N., 2015. The role of the uplift of the QinghaieTibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. Fielding, E.J., Isacks, B., Barazagni, M., Duncan, C., 1994. How flat is Tibet. Geology 22, 163-167. Flohn, H., 1968. Contributions to a Meteorology of the Tibetan Highlands. Atmospheric Science Papers. Department of Atmospheric Science, Colorado State University, p. 130. Frakes, L.A., Francis, J.E., Syktus, J.I., 1992. Climate Modes of the Phanerozoic: The History of the Earth's Climate over the Past 600 Million Years. Cambridge University Press, Cambridge. Garzione, C.N., Quade, J., DeCelles, P.G., English, N.B., 2000. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients of meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett. 183, 215-219. Gébelin, A., Mulch, A., Teyssier, C., Jessup, M.J., Law, R.D., Brunel, M., 2013. The Miocene elevation of Mount Everest. Geology 41, 799-802. Gourbet, L., Leloup, P.H., Paquette, J.-L., Sorrel, P., Maheo, G., Wang, G.-C., Xu, Y., Cao, K., Antoine, P.-O., Eymard, I., Liu, W., Lu, H., Replumaz, A., Chevalier, M.-L., Zhang, K., Wu, J., Shen, T., 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700-701, 162-179. Greenwood, D.R., Wing, S.L., 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23, 1044-1048. Guo, Z., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qian, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159-163. Guo, Z.T., Sun, B.-N., Zhang, Z.S., 2008. A major reorganization of Asian climate by the early Miocene. Clim. Past 4, 153-174. Harrison, T.M., Copeland, P., Kidd, W.S.F., Yin, A., 1992. Raising Tibet. Science 255, 1663-1670. Hasegawa, H., Tada, R., Jiang, X., Suganuma, Y., Imsamut, S., Charusiri, P., Ichinnorov, N., Khand, Y., 2012. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Clim. Past 8, 1323-1337. Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the Earth's orbit: pacemaker of the Ice Ages. Science 194, 1121-1132. Herman, A.B., Spicer, R.A., Aleksandrova, G.N., Yang, J., Kodrul, T.M., Maslova, N.P., Spicer, T.E.V., Chen, G., Jin, J.-H., 2017. EoceneeEarly Oligocene climate and vegetation change in southern China: evidence from the Maoming Basin.Palaeogeogr. Palaeoclimatol. Palaeoecol. 429, 126-137. Hoke, G.D., Liu-Zeng, J., Hren, M.T., Wissink, G.K., Garzione, C.N., 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sci. Lett. 394, 270-278. Huber, B.T., Goldner, A., 2012. Eocene monsoons. J. Asian Earth Sci. 44, 3-23. Jacques, F.M.B., Shi, G.L., Li, H., Wang, W., 2014. An earlyemiddle Eocene Antarctic summer monsoon: evidence of ‘fossil climates’. Gondwana Res. 25, 1422-1428. Jacques, F.M.B., Tao, S., Spicer, R.A., Xing, Y., Huang, Y., Wang, W., Zhou, Z., 2011. Leaf physiognomy and climate: are monsoon systems different? Glob. Planet.Change 76, 56-62. Jia, G., Peng, P., Zhao, Q., Jian, Z., 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea.Geology 31, 1093-1096. Kent-Corson, M.L., Ritts, B.D., Zhuang, G., Bovet, P.M., Graham, S.A., Page Chamberlain, C., 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet. Sci. Lett. 282, 158-166. Khan, M.A., Spicer, R.A., Bera, S., Gosh, R., Yang, J., Spicer, T.E.V., Guo, S., Su, T., Jacques, F.M.B., Grote, P.J., 2014. Miocene to Pleistocene floras and climate of the Eastern Himalayan Siwaliks, and new palaeoelevation estimates for the NamlingeOiyug Basin, Tibet. Glob. Planet. Change 113, 1-10. Khan, M.A., Spicer, R.A., Spicer, T.E.V., Bera, S., 2017. First occurrence of a mastixioid(Cornaceae) fossil in India and its biogeographic implications. Rev. Palaeobot.Palynol. 247, 83-96. Kroon, D., Steens, T., Troelstra, S.R., 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. Ocean Drilling Program Sci. Results 117, 257-263. Kuhle, M., 1998. Reconstruction of the 2.4 million km2 late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate. Quat. Int. 45, 71-108. Lan, J.B., Xu, Y.G., Yang, Q.J., Huang, X.L., 2007. 40 Ma OIB-type mafic magmatism in the Gaoligong belt: results of break-off between subduction Tethyan slab and Indian plate? Acta Petrol. Sin. 23, 1334-1346. Li, D.-M., Li, Q., Chen, W.-J., 2000. Volcanic activities in the Tengchong volcano area since Pliocene. Acta Petrol Sin. 16, 362-370. Li, J.J., Fang, X.M., 1999. Uplift of the Tibetan Plateau and environmental changes.Chin. Sci. Bull. 44, 2117-2124. Li, S., Currie, B.S., Rowley, D.B., Ingalls, M., 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sci. Lett. 432, 415-424. Licht, A., van Cappelle, M., Abels, H.A., Ladant, J.B., TrabuchoeAlexandre, J., FranceLanord, C., Donnadieu, Y., Vandenberghe, N., Rigaudier, T., Lécuyer, C., Terry Jr., D.O., Adriaens, R., CBoura, A., Guo, Z., Soe, A.N., Quade, J., DupontNivet, G., Jaeger, J.J., 2014. Asian monsoons in a late Eocene greenhouse world.Nature 513, 501-506. Linnemann, U., Su, T., Kunzmann, L., Spicer, R.A., Ding, W.-N., Spicer, T.E.V., Zieger, J., Hofmann, M., Moraweck, K., Gärtner, A., Gerdes, A., Marko, L., Zhang, S.Y., Tang, H., Huang, J., Mulch, A., Mosbrugger, V., Zhou, Z.-Z.. New U/Pb dates show a Paleogene origin for the modern SE Asia biodiversity ‘Hotspot’ (in press). Liu, T.S., Ding, Z.L., 1998. Chinese loess and the palaeomonsoon. Annu. Rev. Earth Planet. Sci. 26, 111-145. Liu, T.S., Zheng, M.P., Guo, Z.T., 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movement in Asia. Quat. Sci. 3, 194-204. Liu, X.D., Dong, B.W., 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin. Sci. Bull. 58. Liu, Z.F., Wang, C.S., 2001. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil Basin, Northern Tibet. Sediment. Geol. 140, 251-270. Liu-Zheng, J., Tapponier, P., Gaudemer, Y., Ding, L., 2008. Quantifying landscape differences across the Tibetan plateau: implications for topographic relief evolution. J. Geophys. Res. 113, F04018. Ma, Q.W., Li, F.L., Li, C.S., 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Yunnan, China. Rev. Palaeobot.Palynol. 135, 117-129. Mack, G.H., James, W.C., Monger, H.C., 1993. Classification of Paleosols. Geol. Soc.Am. Bull. 105, 129-136. McLaughlin, S.P., 1994. An Overview of the Flora of the Sky Islands, Southeastern Arizona: Diversity, Affinities, and Insularity. United States Forest Service. Milankovic, M., 1998. Canon of Insolation and the Ice-age Problem. Text Book Publishing Company, Belgrade. Molnar, P., Boos, W.R., Battisti, D.S., 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau.Annu. Rev. Earth Planet. Sci. 38, 77-102. Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Rev. Geophys. 31, 357-396. Molnar, P., Stock, J.M., 2009. Slowing of India's Convergence with Eurasia since 20 Ma and its Implications for Tibetan Mantle Dynamics, Tectonics. American Geophysical Union. Mulch, A., 2016. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet. Sci. Lett. 433, 180-191. Mulch, A., Chamberlain, C.P., 2006. Earth science e the rise and growth of Tibet.Nature 439, 670-671. Murphy, M.A., Yin, A., Harrison, T.M., Durr, S.B., Chen, Z.Y., Ryerson, F.J., Kidd, W.S.F., Wang, X., Zhou, X., 1997. Did the Indo-Asian collision alone create the Tibetan Plateau? Geology 25, 719-722. Myers, N., Mittermeir, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 218-222. Parrish, J.T., 1998. Interpreting Pre-Quaternary Climate from the Geologic Record.Columbia University Press, New York. Platt, J., England, P., 1994. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Am. J. Sci. 294, 307-336. Polissar, P., Freeman, K., Rowley, D., McInerney, F., Currie, B.S., 2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet. Sci.Lett. 287, 64-76. Presgraves, D.C., Glor, R.E., 2010. Evolutionary biology: speciation on islands. Curr.Biol. 20, R440-R442. Prothero, D.R., 1994. Eoceneeoligocene Transition: Paradise Lost. Columbia University Press. Province of Yunnan Bureau of Mining and Geology, 1990. Regional Geology of Yunnan Province. Geological Publishing House. Quan, C., Liu, Y.S., Utescher, T., 2011. Paleogene evolution of precipitation in Northeastern China supporting the Middle Eocene intensification of the East Asian monsoon. Palaios 26, 743-753. Ramage, C.S., 1971. Monsoon Meteorology. Academic Press, New York. Renner, S.S., 2016. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J. Biogeogr. 43, 1479-1487. Retallack, G.J., 1990. Soils of the Past. Unwin Hyman, Boston. Ritts, B.D., Yue, Y., Graham, S.A., Sobel, E.R., Abbink, O.A., Stcokli, D., 2008. From sea level to high elevation in 15 million years: uplift history of the northern Tibetan Plateau margin in the Altun Shan. Am. J. Sci. 308, 657-678. Rowley, D., Currie, B.S., 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature 439, 677-681. Rowley, D.B., Pierrehumbert, R.T., Currie, B.S., 2001. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett. 188, 253-268. Saylor, J.E., Quade, J., Dettman, D.L., DeCelles, P.G., Kapp, P.A., Ding, L., 2009. The late Miocene through present paleoelevation history of southwestern Tibet. Am. J. Sci. 309, 1-42. Shukla, A., Mehrotra, N.C., Spicer, R.A., Spicer, T.E.V., Kumar, M., 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 187-198. Singh, D., 2010. Estimation of surface vapour pressure deficits using satellite derived land surface temperature data. Indian J. Radio Space Phys. 39, 25-31. Sonnenfeld, P., Perthuisot, J.-P., 1989. Brines and Evaporites. American Geophysical Union, Washington DC. Spicer, R.A., Harris, N.B.W., Widdowson, M., Herman, A.B., Guo, S., Valdes, P.J., Wolfe, J.A., Kelley, S.P., 2003. Constant elevation of Southern Tibet over the past 15 million years. Nature 412, 622-624. Spicer, R.A., Yang, J., Herman, A.B., Kodrul, T., Maslova, N., Spicer, T.E.V., Aleksandrova, G., Jin, J., 2016. Asian Eocene monsoons as revealed by leaf architectural signatures. Earth Planet. Sci. Lett. 449, 61-68. Spicer, R.A., Yang, J., Herman, A., Kodrul, T., Aleksandrova, G., Maslova, N., Spicer, T.E.V., Ding, L., Xu, Q., Shukla, A., Srivastava, G., Mehrotra, R.C., Jin, J.-H., 2017. Paleogene monsoons across India and South China: drivers of biotic change. Gondwana Res. 49, 350-363. Sun, J., Xu, Q., Liu, W., Zhang, Z., Xue, L., Zhao, P., 2014. Palynological evidence for the latest OligoceneeEarly Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 21-30. Sun, X., Wang, P., 2005. How old is the Asian monsoon system?: palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181-222. Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671-1677. Tong, Y., Yang, Z., Mao, C., Pei, J., Pu, Z., Xu, Y., 2017. Paleomagnetism of Eocene redbeds in the eastern part of the Qiangtang Terrane and its implications for uplift and southward crustal extrusion in the southeastern edge of the Tibetan Plateau. Earth Planet. Sci. Lett. 475, 1-14. Wang, B., Fan, Z., 1999. Choice of south Asian summer monsoon indices. Bull. Am.Meteorol. Soc. 80, 629-638. Wang, B., Ho, L., 2002. Rainy season of the Asian-Pacific summer monsoon. J. Clim. 15, 386-398. Wang, Q., Wyman, D.A., Li, Z.X., Sun, W.D., Chung, S.L., Vasconcelos, P.M., Zhang, Q.Y., Dong, H., Yu, Y.S., Pearson, N., Qiu, H.N., Zhu, T.X., Feng, X.T., 2010. Eocene northesouth trending dikes in central Tibet: new constraints on the timing of eastewest extension with implications for early plateau uplift? Earth Planet. Sci. Lett. 298, 205-216. Wang, C.S., Dai, J., Zhao, X., Li, Y., Graham, S.A., He, D., Ran, B., Meng, J., 2014.Outward-growth of the Tibetan Plateau during the Cenozoic: a review. Tectonics 621, 1-43. West, C.K., Greenwood, D.R., Basinger, J.F., 2015. Was the Arctic Eocene ‘rainforest’ monsoonal? Estimates of seasonal precipitation from early Eocene megafloras from Ellesmere Island, Nunavut. Earth Planet. Sci. Lett. 427, 18-30. Whittaker, R.J., Triantis, K.A., Ladle, R.J., 2008. A general dynamic theory of oceanic island biogeography. J. Biogeogr. 35, 977-994. Williams, H.M., Turner, S., Kelley, S.P., Harris, N.B.W., 2001. Age and composition of dikes in Southern Tibet: new constraints on the timing of eastewest extension and its relationship to postcollisional volcanism. Geology 29, 339-342. Wu, Z.Y., Barosh, P.J., Hu, D.G., Xun, Z., Ye, P.S., 2008. Vast early Miocene Lakes of the central Tibetan Plateau. Geol. Soc. Am. Bull. 120, 1326-1337. Xu, J.X., Ferguson, D.K., Li, C.S., Wang, Y.F., 2008. Late Miocene vegetation and climate oft he Lühe region in Yunnan, southwestern China. Rev. Palaeobot.Palynol. 148, 36-59. Xu, Q., Ding, L., Zhang, L.Y., Cai, F.L., Lai, Q.Z., Yang, D., Zeng, J.L., 2013. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth Planet. Sci.Lett. 362, 31-42. Yanai, M., Wu, G.X., 2006. Effects of the Tibetan Plateau. In: Wang, B. (Ed.), The Asian Monsoon. Springer, Berlin, pp. 513-549. Yang, J., Spicer, R.A., Spicer, T.E.V., Arens, N.C., Jacques, F.M.B., Su, T., Kennedy, E.M., Herman, A.B., Steart, D.C., Srivastava, G., Mehrotra, R.C., Valdes, P.J., Mehrotra, N.C., Zhou, Z., Lai, J., 2015. Leaf formeclimate relationships on the global stage: an ensemble of characters. Glob. Ecol. Biogeogr. 24, 1113-1125. Yang, Z.M., Hou, Z.Q., Yang, Z.S., Wang, S.X., Wang, G.R., Tian, S.H., Wang, Z.L., Liu, Y.C., 2008. Genesis of porphyries and tectonic controls on the Narigongma porphyry Mo(eCu) deposit, southern Qinghai. Acta Petrol. Sin. 24, 489-502. Yi, T.M., Li, C.S., Xu, J.X., 2003. Late Miocene woods of Taxodiaceae from Yunnan, China. Acta Bot. Sin. 45, 384-389. Yin, A., Dang, Y.Q., Zhang, M., Chen, X.H., McRivette, M.W., 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol. Soc. Am.Bull. 120, 847-876. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. Zhang, S., Wang, B., 2008. Global summer monsoon rainy seasons. Int. J. Climatol. 28, 1563-1578. Zhang, Y.L., Ferguson, D.K., Ablaev, A.G., Wang, Y.F., Li, C.S., Xie, L., 2007. Equisetum cf.pratense (Equisetaceae) from the Miocene of Yunnan in southwestern China and its paleoecological implications. Int. J. Plant Sci. 168, 351-359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||