Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 194-205.DOI: 10.1016/j.pld.2023.10.004
• Articles • Previous Articles Next Articles
Peng-Cheng Fua, Qiao-Qiao Guoa, Di Changa, Qing-Bo Gaob, Shan-Shan Suna
Received:
2023-04-26
Revised:
2023-10-24
Online:
2024-03-25
Published:
2024-04-07
Contact:
Peng-Cheng Fu,E-mail:fupengc@sina.com
Supported by:
Peng-Cheng Fu, Qiao-Qiao Guo, Di Chang, Qing-Bo Gao, Shan-Shan Sun. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis[J]. Plant Diversity, 2024, 46(02): 194-205.
Add to citation manager EndNote|Ris|BibTeX
[1] Abbott, R.J., 2017. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J. Syst. Evol. 55, 238-258. [2] Abbott, R.J., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evolution. Biol. 26, 229-246. [3] Antonelli, A., Kissling, W.D., Flantua, et al., 2018. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718-725. [4] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [5] Bouckaert, R., Heled, J., Kuhnert, D., et al., 2014. BEAST 2:a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. [6] Carstens, B.C., Satler, J.D., 2013. The carnivorous plant described as Sarracenia alata contains two cryptic species. Biol. J. Linn. Soc. 109, 737-746. [7] Chen, J. 2020. Evolutionary Process of the Yangtze River. Evolution and Water Resources Utilization of the Yangtze River. Singapore:Springer, pp. 47-122. [8] Chen, C.L., Zhang, L., Li, J.L., et al., 2021. Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). J. Syst. Evol. 59, 1198-1208. [9] Chen, C., Ruhfel, B.R., Li, J., et al., 2023. Phylotranscriptomics of Swertiinae (Gentianaceae) reveals that key floral traits are not phylogenetically correlated. J. Integr. Plant Biol. 65, 1490-1504. [10] Christe, C., Caetano, S., Aeschimann, D., et al., 2014. The intraspecific genetic variability of siliceous and calcareous Gentiana species is shaped by contrasting demographic and re-colonization processes. Mol. Phylogenet. Evol. 70, 323-336. [11] Christmas, M.J., Jones, J.C., Olsson, A., et al., 2021. Genetic barriers to historical gene flow between cryptic species of alpine bumblebees revealed by comparative population genomics. Mol. Biol. Evol. 38, 3126-3143. [12] Clegg, M.T., Durbin, M.L., 2000. Flower color variation:a model for the experimental study of evolution. Proc. Natl. Acad. Sci. U.S.A. 97, 7016-7023. [13] Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. [14] Dantas-Queiroz, M.V., Hurbath, F., de Russo Godoy, F., et al., 2023. Comparative phylogeography reveals the demographic patterns of Neotropical ancient mountain species. Mol. Ecol. 32, 3165-3181. [15] Deng, J.Y., Fu, R.H., Compton, S.G., et al., 2020. Sky islands as foci for divergence of fig trees and their pollinators in southwest China. Mol. Ecol. 29, 762-782. [16] Ding, W.N., Ree, R.H., Spicer, R.A., et al., 2020. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 369, 578-581. [17] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973. [18] Durand, E.Y., Patterson, N., Reich, D., et al., 2011. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239-2252. [19] Ebersbach, J., Tkach, N., Roser, M., et al., 2020. The role of hybridisation in the making of the species-rich arctic-alpine genus Saxifraga (Saxifragaceae). Diversity 12, 440. [20] Elsen, P.R., Tingley, M.W., 2015. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772-776. [21] Favre, A., Packert, M., Pauls, S. U., et al., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. [22] Favre, A., Michalak, I., Chen, C.H., et al., 2016. Out-of-Tibet:the spatio-temporal evolution of Gentiana (Gentianaceae). J. Biogeogr. 43, 1967-1978. [23] Favre, A., Pringle, J.S., Heckenhauer, J., et al., 2020. Phylogenetic relationships and sectional delineation within Gentiana (Gentianaceae). Taxon 69, 1221-1238. [24] Favre, A., Paule, J., Ebersbach, J., 2021. Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European alpine system. Alp. Bot. 132, 29-50. [25] Feng, L., Ruhsam, M., Wang, Y.H., et al., 2020. Using demographic model selection to untangle allopatric divergence and diversification mechanisms in the Rheum palmatum complex in the Eastern Asiatic Region. Mol. Ecol. 29, 1791-1805. [26] Fick, S.E., Hijmans, R.J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. [27] Flantua, S.G., O'Dea, A., Onstein, R.E., et al., 2019. The flickering connectivity system of the north Andean paramos. J. Biogeogr. 46, 1808-1825. [28] Fu, P.C., Ya, H.Y., Liu, Q.W., et al., 2018. Out of refugia:Population genetic structure and evolutionary history of the alpine medicinal plant Gentiana lawrencei var. farreri (Gentianaceae). Front. Genet. 9, 564. [29] Fu, P.C., Sun, S.S., Khan, G., et al., 2020. Population subdivision and hybridization in a species complex of Gentiana in the Qinghai-Tibetan Plateau. Ann. Bot. 125, 677-690. [30] Fu, P.C., Twyford, A.D., Sun, S.S., et al., 2021a. Recurrent hybridization underlies the evolution of novelty in Gentiana (Gentianaceae) in the Qinghai-Tibetan Plateau. AoB Plants 13, plaa068. [31] Fu, P.C., Sun, S.S., Twyford, A.D., et al., 2021b. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol. Evol. 11, 3286-3299. [32] Fu, P.C., Sun, S.S., Hollingsworth, P.M., et al., 2022a. Population genomics reveal deep divergence and strong geographical structure in gentians in the Hengduan Mountains. Front. Plant Sci. 13, 936761. [33] Fu, P.C., Favre, A., Wang, R., et al., 2022b. Between allopatry and secondary contact:differentiation and hybridization among three sympatric Gentiana species in the Qinghai-Tibet Plateau. BMC Plant Biol. 22, 1-15. [34] Fu, P.C., Chen, S.L., Sun, S.S., et al., 2022c. Strong plastid degradation is consistent within section Chondrophyllae, the most speciose lineage of Gentiana. Ecol. Evol. 12, e9205. [35] Garrison, E., Marth, G., 2012. Haplotype-based variant detection from short-read sequencing. arXiv. 1207.3907. [36] Goudet, J., 2005. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes. 5, 184-186. [37] Guo, W., Yang, Y., Zhang, X., et al., 2023. Genomic divergence between two sister Medicago species triggered by the Quaternary climatic oscillations in the Qinghai-Tibet Plateau and northern China. Mol. Ecol. 32, 3118-3132. [38] Hebert, P.D., Penton, E.H., Burns, J.M., et al., 2004. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA. 101, 14812-14817. [39] Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913. [40] Ho, T.N., Liu, S.W., 2001. A Worldwide Monograph of Gentiana. Beijing:Science Press. [41] Ho, T.N., Pringle, J.S., 1995. Gentianaceae. In:Wu, Z.Y., Raven, P.H. (eds.). Flora of China, vol. 16. Beijing:Science Press; St. Louis:Missouri Botanical Garden, pp. 1-140. [42] Hoang, D.T., Chernomor, O., Von Haeseler, A., et al., 2018. UFBoot2:improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. [43] Hou, Q.Z., Duan, Y.W., Si, Q.W., et al., 2009. Pollination ecology of Gentiana lawrencei var. farreri, a late-flowering Qinghai-Tibet plateau species. Chin. J. Plant Ecol. 33, 1156-1164. [44] Hu, Q., Peng, H., Bi, H., et al., 2016. Genetic homogenization of the nuclear ITS loci across two morphologically distinct gentians in their overlapping distributions in the Qinghai-Tibet Plateau. Sci. Rep. 6, 1-11. [45] Janssens, S.B., Couvreur, T.L.P., Mertens, A., et al., 2020. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers. Data J. 8, e39677. [46] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. [47] Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587. [48] Katoh, K., Misawa, K., Kuma, K.I., et al., 2002. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066. [49] Kirschner, P., Zaveska, E., Gamisch, A., et al., 2020. Long-term isolation of European steppe outposts boosts the biome's conservation value. Nat. Commun. 11, 1968. [50] Lei, F., Qu, Y., Song, G., 2014. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr. Zool. 60, 149-161. [51] Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. [52] Li, H., Handsaker, B., Wysoker, A., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. [53] Li, Q., Sun, H., Boufford, D. E., et al., 2021. Grade of membership models reveal geographical and environmental correlates of floristic structure in a temperate biodiversity hotspot. New Phytol. 232, 1424-1435. [54] Li, T, Yu, X., Ren, Y., et al., 2022. The chromosome-level genome assembly of Gentiana dahurica (Gentianaceae) provides insights into gentiopicroside biosynthesis. DNA Res. 29, dsac008. [55] Li, X., Ruhsam, M., Wang, Y., et al., 2023. Wind-dispersed seeds blur phylogeographic breaks:The complex evolutionary history of Populus lasiocarpa around the Sichuan Basin. Plant Divers. 45, 156-168. [56] Liang, Q., Xu, X., Mao, K., et al., 2018. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45, 1334-1344. [57] Liang, M., Chen, W., LaFountain, A.M., et al., 2023. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. Science 379, 576-582. [58] Lischer, H.E., Excoffier, L., 2012. PGDSpider:an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298-299. [59] Liu, J., Moller, M., Provan, J., et al., 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 199, 1093-1108. [60] Liu, B., Abbott, R.J., Lu, Z., et al., 2014. Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Mol. Ecol. 23, 3013-3027. [61] Liu, Y.Y., Jin, W.T., Wei, X.X., et al., 2019. Cryptic speciation in the Chinese white pine (Pinus armandii):Implications for the high species diversity of conifers in the Hengduan Mountains, a global biodiversity hotspot. Mol. Phylogenet. Evol. 138, 114-125. [62] Liu, J., Milne, R.I., Zhu, G.F., et al., 2022. Name and scale matters:Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global Planet. Change 215, 103893. [63] Luo, D., Yue, J.P., Sun, W.G., et al., 2016. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains:First insights from comparative phylogeography of four perennial herbs. J. Biogeogr. 43, 31-43. [64] Ma, Y., Mao, X., Wang, J., et al., 2022. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China. Natl. Sci. Rev. 9, nwac276. [65] Mai, D., 2000. Die mittelmiozanen und obermiozanen Floren aus der Meuroer und Raunoer Folge in der Lausitz. Teil I:Farnpflanzen, Koniferen und Monokotyledonen. Palaeontographica, Abteilung B, Palaophytologie, 256, 1-68. [66] Malinsky, M., Svardal, H., Tyers, A.M., et al. 2018. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nature Ecol. Evol. 457, 830. [67] Malinsky, M., Matschiner, M., Svardal, H., 2021. Dsuite-fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584-595. [68] Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283. [69] Marchese, C., 2015. Biodiversity hotspots:A shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297-309. [70] Muchhala, N., Johnsen, S., Smith, S.D., 2014. Competition for hummingbird pollination shapes flower color variation in Andean Solanaceae. Evolution 68, 2275-2286. [71] Muellner-Riehl, A.N., 2019. Mountains as evolutionary arenas:patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan Region. Front. Plant Sci. 10, 195. [72] Muellner-Riehl, A.N., Schnitzler, J., Kissling, W.D., et al., 2019. Origins of global mountain plant biodiversity:Testing the 'mountain-geobiodiversity hypothesis'. J. Biogeogr. 46, 2826-2838. [73] Myers, N., Mittermeier, R. A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. [74] Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [75] Nocchi, G., Wang, J., Yang, L., et al., 2023. Genomic signals of local adaptation and hybridization in Asian white birch. Mol. Ecol. 32, 595-612. [76] Pertierra, L.R., Segovia, N.I., Noll, D., et al., 2020. Cryptic speciation in gentoo penguins is driven by geographic isolation and regional marine conditions:Unforeseen vulnerabilities to global change. Divers. Distrib. 26, 958-975. [77] Phillips, S.J., Anderson, R.P., Dudik, M., et al., 2017. Opening the black box:an open-source release of Maxent. Ecography 40, 887-893. [78] Purcell, S., Neale, B., Todd-Brown, K., et al., 2007. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575. [79] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA:A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. [80] R Core Team, 2020. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [81] Raj, A., Stephens, M., Pritchard, J.K., 2014. fastSTRUCTURE:variational inference of population structure in large SNP data sets. Genetics 197, 573-589. [82] Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science 317, 910-914. [83] Rosenberg, N.E., 2004. DISTRUCT:a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137-138. [84] Schenk, J.J., Axel, J., 2016. Consequences of secondary calibrations on divergence time estimates. PLoS One 11, e0148228. [85] Schley, R.J., Twyford, A.D., Pennington, R.T., 2022. Hybridization:a 'double-edged sword' for Neotropical plant diversity. Bot. J. Linn. Soc. 199, 331-356. [86] Schumer, M., Rosenthal, G.G., Andolfatto, P., 2014. How common is homoploid hybrid speciation?. Evolution 68, 1553-1560. [87] Seregin, A.P., Anackov, G., Friesen, N., 2015. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae):geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67-101. [88] Struck, T.H., Feder, J.L., Bendiksby, M., et al., 2018. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153-163. [89] Sun, H., Zhang, J., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161-166. [90] Sun, S.S., Guo, Y.L., Favre, A., et al., 2022. Genetic differentiation and evolutionary history of two medicinal gentians (Gentiana stipitata Edgew. and Gentiana szechenyii Kanitz) in the Qinghai-Tibet Plateau. J. Appl. Res. Med. Aroma. 30, 100375. [91] Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [92] Tarasov, A., Vilella, A.J., Cuppen, E., et al., 2015. Sambamba:fast processing of NGS alignment formats. Bioinformatics 31, 2032-2034. [93] Vallejo-Marin, M., Hiscock, S.J., 2016. Hybridization and hybrid speciation under global change. New Phytol. 211, 1170-1187. [94] van Wyk, A.M., Dalton, D.L., Hoban, S., et al., 2017. Quantitative evaluation of hybridization and the impact on biodiversity conservation. Ecol. Evol. 7, 320-330. [95] Wan, D.S., Feng, J.J., Jiang, D.C., et al., 2016. The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai-Tibet Plateau endemic herbaceous perennial, Anisodus tanguticus (Solanaceae). Ecol. Evol. 6, 1977-1995. [96] Wang, T.R., Meng, H.H., Wang, N., et al., 2023. Adaptive divergence and genetic vulnerability of relict species under climate change:a case study of Pterocarya macroptera. Ann. Bot. mcad083. [97] Warnock, R.C.M., Parham, J.F., Joyce, W. G., et al., 2015. Calibration uncertainty in molecular dating analyses:there is no substitute for the prior evaluation of time priors. Proc. Roy. Soc. B-Biol. Sci. 282, 20141013. [98] Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370. [99] White, O.W., Reyes-Betancort, J.A., Chapman, M.A., et al., 2020. Geographical isolation, habitat shifts and hybridisation in the diversification of the Macaronesian endemic genus Argyranthemum (Asteraceae). New Phytol. 228, 1953-1971. [100] Wright, S., 1943. Isolation by distance. Genetics 28, 114-138. [101] Wu, S., Wang, Y., Wang, Z., et al., 2022. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. New Phytol. 234, 392-404. [102] Xing, Y., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451. [103] Yang, F.S., Qin, A.L., Li, Y.F., 2012. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau. PLoS One 7, e37196. [104] Yang, R., Folk, R., Zhang, N., et al., 2019. Homoploid hybridization of plants in the Hengduan mountains region. Ecol. Evol. 9, 8399-8410. [105] Yuan, Y.M., Kupfer, P., 1997. The monophyly and rapid evolution of Gentiana sect. Chondrophyllae Bunge s.l. (Gentianaceae):evidence from the nucleotide sequences of the internal transcribed spacers of nuclear ribosomal DNA. Bot. J. Linn. Soc. 123, 25-43. [106] Zhang, X.L., Wang, Y.J., Ge, X.J., et al., 2009. Molecular phylogeny and biogeography of Gentiana sect. Cruciata (Gentianaceae) based on four plastid DNA datasets. Taxon 58, 862-870. [107] Zhang, X., Sun, Y., Landis, J.B., et al., 2020. Genomic insights into adaptation to heterogeneous environments for the ancient relictual Circaeaster agrestis (Circaeasteraceae, Ranunculales). New Phytol. 228, 285-301. [108] Zhang, Z., Daly, J.S., Tyrrell, S., et al., 2021. Formation of the three Gorges (Yangtze River) no earlier than 10 Ma. Earth-Sci. Rev. 216, 103601. [109] Zheng, B.X., Xu, Q.Q., Shen, Y.P., 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau:review and speculation. Quatern. Int. 97-98, 93-101. [110] Zheng, W., Yan, L.J., Burgess, K.S., et al., 2021. Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence. BMC Plant Biol. 21, 1-12. |
[1] | Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics [J]. Plant Diversity, 2024, 46(02): 219-228. |
[2] | Haibin Yu, Man Yang, Zixin Lu, Weitao Wang, Fangyuan Yu, Yonghua Zhang, Xue Yin, Hongjun Yu, Junjie Hu, David C. Deane. A phylogenetic approach identifies patterns of beta diversity and floristic subregions of the Qinghai-Tibet Plateau [J]. Plant Diversity, 2024, 46(01): 59-69. |
[3] | Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients? [J]. Plant Diversity, 2023, 45(04): 446-455. |
[4] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes [J]. Plant Diversity, 2023, 45(02): 125-132. |
[5] | Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia [J]. Plant Diversity, 2023, 45(02): 147-155. |
[6] | Yan-Ling Xu, Hao-Hua Shen, Xin-Yu Du, Lu Lu. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae) [J]. Plant Diversity, 2022, 44(06): 519-529. |
[7] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species [J]. Plant Diversity, 2022, 44(05): 505-517. |
[8] | Shiou Yih Lee, Ke-Wang Xu, Cui-Ying Huang, Jung-Hyun Lee, Wen-Bo Liao, Yong-Hong Zhang, Qiang Fan. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription [J]. Plant Diversity, 2022, 44(03): 279-289. |
[9] | Mengqing Zhe, Le Zhang, Fang Liu, Yiwei Huang, Weishu Fan, Junbo Yang, Andan Zhu. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes [J]. Plant Diversity, 2022, 44(03): 316-321. |
[10] | Jia-Xin Yang, Shuai Peng, Jun-Jie Wang, Shi-Xiong Ding, Yan Wang, Jing Tian, Han Yang, Guang-Wan Hu, Qing-Feng Wang. Morphological and genomic evidence for a new species of Corallorhiza (Orchidaceae: Epidendroideae) from SW China [J]. Plant Diversity, 2021, 43(05): 409-419. |
[11] | Xinhui Li, Tao Yang, Dandan Wang. Phylogenetic and functional structures of succession in plant communities on mounds of Marmota himalayana in alpine regions on the northeast edge of the Qinghai-Tibet Plateau [J]. Plant Diversity, 2021, 43(04): 275-280. |
[12] | Xiaoping Li, Yamei Zhao, Xiongde Tu, Chengru Li, Yating Zhu, Hui Zhong, Zhong-Jian Liu, Shasha Wu, Junwen Zhai. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers [J]. Plant Diversity, 2021, 43(04): 281-291. |
[13] | Feng-Wei Lei, Ling Tong, Yi-Xuan Zhu, Xian-Yun Mu, Tie-Yao Tu, Jun Wen. Plastid phylogenomics and biogeography of the medicinal plant lineage Hyoscyameae (Solanaceae) [J]. Plant Diversity, 2021, 43(03): 192-197. |
[14] | Bibo Yang, Liangda Li, Jianquan Liu, Lushui Zhang. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau [J]. Plant Diversity, 2021, 43(03): 198-205. |
[15] | Luxian Liu, Yonghua Zhang, Pan Li. Development of genomic resources for the genus Celtis (Cannabaceae) based on genome skimming data [J]. Plant Diversity, 2021, 43(01): 43-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||