Plant Diversity ›› 2023, Vol. 45 ›› Issue (01): 6-19.DOI: 10.1016/j.pld.2022.10.002
• Research paper • Previous Articles Next Articles
Xing Liua, Hui-Min Caia, Wen-Qiao Wanga, Wei Lina, Zhi-Wei Sub, Zhong-Hui Maa
Received:
2022-04-27
Revised:
2022-10-04
Published:
2023-02-23
Contact:
Zhong-Hui Ma,E-mail:mazhonghui@gxu.edu.cn
Supported by:
Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae)[J]. Plant Diversity, 2023, 45(01): 6-19.
Add to citation manager EndNote|Ris|BibTeX
[1] Areces-Berazain, Fabiola., James, D.Ackerman., 2017. Diversification and fruit evolution in eumalvoids (Malvaceae). Bot. J. Linn. Soc. 184, 401-417 [2] Beaulieu, J.M., Donoghue, M.J., 2013. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132-3144 [3] Bogert, C.M., 1949. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195-211 [4] Bollback, J.P., 2006. SIMMAP:stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 [5] Bouckaert, R., Heled, J., Kuhnert, D., et al. 2014. BEAST 2:a software platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10, e1003537 [6] Bramley, G.L.C., 2009. The genus Callicarpa (Lamiaceae) on Borneo. Bot. J. Linn. Soc. 159, 416-455 [7] Bramley, G.L.C., 2011. Distribution patterns in Malesian Callicarpa (Lamiaceae). Garden Bull. Singap. 63, 287-298 [8] Bremer, K., 1992. Ancestral areas:a cladistic reinterpretation of the center of origin concept. Syst. Biol. 41, 436-445 [9] Burns, K.C., 2015. The color of plant reproduction:macroecological trade-offs between biotic signaling and abiotic tolerance. Front. Ecol. Evol. 3, 118 [10] Campanella, J.J., Smalley, J.V., Dempsey, M.E., 2014. A phylogenetic examination of the primary anthocyanin production pathway of the Plantae. Bot. Stud. 55, 1-10 [11] Cantley, J.T., Markey A.S., Swenson, N.G., et al., 2016. Biogeography and evolutionary diversification in one of the most widely distributed and species rich genera of the Pacific. Aob Plants 8, 16 [12] Cantrell, C.L., Klun, J.A., Bryson, C.T., et al., 2005. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. J. Agr. Food Chem. 53, 5948-5953 [13] Cavanaugh, J.E., 1997. Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probabil. Lett. 33, 201-208 [14] Cazetta, E., Schaefer, H.M., Galetti, M., 2008. Does attraction to frugivores or defense against pathogens shape fruit pulp composition? Oecologia 155, 277-286 [15] Chalker-Scott, L., 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1-9 [16] Chen, S.L., Michael, G.G., 1994. Flora of China, in:Wu Z. Y., & P. H. Raven (eds), Verbenaceae. Science Press & St. Louis:Missouri Botanical Garden Press, Beijing, pp. 25-79 [17] Chen, S.C., Cornwell, W.K., Zhang, H.X., et al., 2017. Plants show more flesh in the tropics:variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531-538 [18] Chung, I.M., Ali, M., Upadhayay, K., et al., 2005. Isolation and cytotoxic activity of acyclic triterpene callicarpenol from Callicarpa macrophylla. Asian J. Org. Chem. 17, 1907-1914 [19] Cuthill, I.C., 2015. Flower colour:Gloger's rule isn't just for the birds. Nat. Plants 1, 1-2 [20] Dodd, M.E., J, Silvertown., Chase, M.W., 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53, 732-744 [21] Donoghue, M.J., Smith, S.A., 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. T. R. Soc. B. 359, 1633-1644 [22] Doyle, J.J., Doyle, J.D., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15 [23] Drew, B.T., Sytsma, K.J., 2012. Phylogenetics, biogeography, and staminal evolution in the tribe mentheae (Lamiaceae). Am. J. Bot. 99, 933-953 [24] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973 [25] Ebersbach, J., Schnitzler, J., Favre, A., et al., 2017. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol. Biol. 17, 119 [26] Eriksson, O., B, Bremer., 1991. Fruit characteristics, life forms, and species richness in the plant family Rubiaceae. Am. Nat. 138, 751-761 [27] Fricke, E.C., Svenning, J.C., 2020. Accelerating homogenization of the global plant-frugivore meta-network. Nature 585, 74-78 [28] Gao, J., Liao, P.C., Huang, B.H., et al., 2020. Historical biogeography of Acer L. (Sapindaceae):genetic evidence for Out-of-Asia hypothesis with multiple dispersals to North America and Europe. Sci. Rep. 10, 1-10 [29] Glor, R.E., 2010. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251-270 [30] Gould, K.S., 2004. Nature's Swiss army knife:the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 314-320 [31] Harris, A.J., Xiang, Q.Y., 2009. Estimating ancestral distributions of lineages with uncertain sister groups:a statistical approach to Dispersal-Vicariance Analysis and a case using Aesculus L. (Sapindaceae) including fossils. J. Syst. Evol. 47, 349-368 [32] Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1992. Raising tibet. Science 255, 1663-1670 [33] Herrera, C.M., 1989. Seed dispersal by animals:a role in angiosperm diversification? Am. Nat. 133, 309-322 [34] Hill, A.P., Jimenez, M.F.T., Chazot, N., et al., 2021. Fruit colour and range size interact to influence diversification. bioRxiv [35] Holt, B.G., Lessard, J.P., Borregaard, M.K., et al., 2013. Response to comment on "An update of Wallace's zoogeographic regions of the world". Science 341, 343-343 [36] Hughes, C., Eastwood, R., 2006. Island radiation on a continental scale:exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. U.S.A. 103, 10334-10339 [37] Hutter, C.R., Lambert, S.M., Wiens, J.J., 2017. Rapid diversification and time explain amphibian richness at different scales in the Tropical Andes, Earth's most biodiverse hotspot. Am. Nat. 190, 828-843 [38] Jaa, A.A., 2004. MrModeltest v. 2 (program distributed by the author) [39] Jafari, M., Ansari-Pour, N., 2019. Why, when and how to adjust your P values? Cell J. 20, 604 [40] Janson, C.H., 1983. Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science 219, 187-189 [41] Jansson, R., Davies, T.J., 2008. Global variation in diversification rates of flowering plants:energy vs. climate change. Ecol. Lett. 11, 173-183 [42] Jetz, W., Thomas, G.H., Joy, J.B., et al., 2012. The global diversity of birds in space and time. Nature 491, 444-448 [43] Jordano, P., Garcia, C., Godoy, J.A., et al., 2007. Differential contribution of frugivores to complex seed dispersal patterns. Proc. Natl. Acad. Sci. U.S.A. 104, 3278-3282 [44] Kar, R., 1996. On the Indian origin of Ocimum (Lamiaceae):A palynological approach. Palaeobotanist 43, 43-50 [45] Kemp, D.J., Herberstein, M.E., Fleishman, L.J., et al., 2015. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185:705-724 [46] Klaus, K.V., Matzke, N.J., 2020. Statistical comparison of trait-dependent biogeographical models indicates that podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 69, 61-75 [47] Kong, H., Condamine, F.L., Yang, L., et al., 2022. Phylogenomic and macro-evolutionary evidence for an explosive radiation of a plant genus in the Miocene. Syst. Biol. 71, 589-609 [48] Kozak, K.H., Wiens, J.J., 2016. Testing the relationships between diversification, species richness, and trait evolution. Syst. Biol. 65, 975-988 [49] Lagomarsino, L.P., Condamine, F.L., Antonelli, A., et al., 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430-1442 [50] Landis, M.J., Matzke, N.J., Moore, B.R., et al., 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789-804 [51] Landis, M.J., Freyman, W.A., Baldwin, B.G., 2018. Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. Evolution 72, 2343-2359 [52] Latti, A.K., Riihinen, K.R., Kainulainen, P.S., 2008. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agr. Food Chem. 56, 190-196 [53] Li, B., Cantino, P.D., Olmstead, R.G., et al., 2016. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Sci. Rep. 6, 1-18 [54] Lu, L., Fritsch, P.W., Matzke, N.J., et al., 2019. Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit-colour evolution, biogeography and diversification. Global Ecol. Biogeogr. 28, 891-903 [55] MacKinnon, J.R., MacKinnon, J., Phillipps, K., et al., 2000. A field guide to the birds of China. Oxford University Press [56] Mahler, D.L., Revell, L.J., Glor, R.E., et al., 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64, 2731-2745 [57] Martinez-Millan, M., 2010. Fossil record and age of the Asteridae. Bot. Rev. 76, 83-135 [58] McGuire, J.A., Witt, C.C., Remsen, J.V., et al. 2014. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 1038-1038 [59] Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. The CIPRES science gateway:a community resource for phylogenetic analyses. Proceedings of the 2011 TeraGrid Conference:extreme digital discovery 2011, 1-8 [60] Moen, D., Morlon, H., 2014. Why does diversification slow down? Trends Ecol. Evol. 29, 190-197 [61] Moore, B.R., Hohna, S., May, M.R., et al., 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl. Acad. Sci. U.S.A. 113, 9569-9574 [62] Nakagawa, S., 2004. A farewell to Bonferroni:the problems of low statistical power and publication bias. Behav. Ecol. 15, 1044-1045 [63] Nakanishi, H., 1996. Fruit color and fruit size of bird-disseminated plants in Japan. J. Veg. Sci. 123, 207-218 [64] Nishi, H., Tsuyuzaki, S., 2004. Seed dispersal and seedling establishment of Rhus trichocarpa promoted by a crow (Corvus macrorhynchos) on a volcano in Japan. Ecography 27, 311-322 [65] Nylander, J.A., Olsson, U., Alstrom, P., et al., 2008. Accounting for phylogenetic uncertainty in biogeography:a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves:Turdus). Syst. Biol. 57, 257-268 [66] Paradis, E., Claude, J., Strimmer, K., 2004. APE:Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289-290 [67] Pyron, R.A., Wiens, J.J., 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. P. Roy. Soc. B-Biol. Sci. 280, 20131622 [68] Qian, C.J., Shi, Y., Liu, Y., et al., 2018. Phylogenetics and dispersal patterns of Brassicaceae around the Qinghai-Tibet Plateau. J. Syst. Evol. 56, 202-217 [69] Rabosky, D.L., Donnellan, S.C., Grundler, M., et al., 2014a. Analysis and visualization of complex macroevolutionary dynamics:an example from Australian scincid lizards. Syst. Biol. 63, 610-627 [70] Rabosky, D.L., Grundler, M., Anderson, C., et al. 2014b. BAMMtools:an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701-707 [71] Rambaut, A., Drummond, A.J., Xie, D., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901 [72] Reguera, S., Zamora-Camacho, F.J., Moreno-Rueda, G., 2014. The lizard Psammodromus algirus (Squamata:Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112, 132-141 [73] Revell, L.J., 2012. Phytools:an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223 [74] Rolland, J., Condamine, F.L., Jiguet, F., et al., 2014. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biology 12, e1001775 [75] Schaefer, H.M., McGraw, K., Catoni, C., 2008. Birds use fruit colour as honest signal of dietary antioxidant rewards. Funct. Ecol. 22, 303-310 [76] Schaefer, H.M., Valido, A., Jordano, P., 2014. Birds see the true colours of fruits to live off the fat of the land. P. Roy. Soc. B-Biol. Sci. 281, 20132516 [77] Shanahan, M., So, S., Compton, S.G., et al., 2001. Fig-eating by vertebrate frugivores:a global review. Biol. Rev. 76, 529-572 [78] Shaw, J., Lickey, E.B., Beck, J.T., et al., 2005. The tortoise and the hare II:relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92, 142-166 [79] Shaw, J., Lickey, E.B., Schilling, E.E., et al., 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms:the tortoise and the hare III. Am. J. Bot. 94, 275-288 [80] Sinnott-Armstrong, M.A., Downie, A.E., Federman, S., et al., 2018. Global geographic patterns in the colours and sizes of animal-dispersed fruits. Global Ecol. Biogeogr. 27, 1339-1351 [81] Sinnott-Armstrong, M.A., Lee, C., Clement, W.L., et al., 2020. Fruit syndromes in Viburnum:correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol. Biol. 20, 1-19 [82] Sinnott-Armstrong, M.A., Donoghue, M.J., Jetz, W.J., 2021. Dispersers and environment drive global variation in fruit colour syndromes. Ecol. Lett. 24, 1387-1399 [83] Smith, J.F., 2001. High species diversity in fleshy-fruited tropical understory plants. Am. Nat. 157, 646-653 [84] Smith, S.B., DeSando, S.A., Pagano, T., 2013. The value of native and invasive fruit-bearing shrubs for migrating songbirds. Northeast. Nat. 20, 171-184 [85] Sotomayor, D.A., 2014. Biotic evolution and environmental change in Southeast Asia. Can. Geogr-Geogr. Can. 58, E58-E58 [86] Spriggs, E.L., Clement, W.L., Sweeney, P.W., et al., 2015. Temperate radiations and dying embers of a tropical past:the diversification of Viburnum. New Phytol. 207, 340-354 [87] Steyn, W.J., Wand, S.J.E., Holcroft, D.M., et al., 2002. Anthocyanins in vegetative tissues:a proposed unified function in photoprotection. New Phytol. 155, 349-361 [88] Steyn, W.J., Wand, S.J.E., Jacobs, G., et al., 2009. Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel. Physiol. Plantarum 136, 461-472 [89] Sullivan, D., 2009. Google Earth Pro. Econtent 32, 16-18 [90] Tiffney, B.H., Mazer, S.J., 1995. Angiosperm growth habit, dispersal and diversification reconsidered. Evol. Ecol. 9, 93-117 [91] Tu, Y.H., Sun, L.N., Guo, M.L., et al., 2013. The medicinal uses of Callicarpa L. in traditional Chinese medicine:An ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol. 146, 465-481 [92] Valenta, K., Nevo, O., 2020. The dispersal syndrome hypothesis:how animals shaped fruit traits, and how they did not. Funct. Ecol. 34, 1158-1169 [93] Van Dam, M.H., Matzke, N.J., 2016. Evaluating the influence of connectivity and distance on biogeographical patterns in the south-western deserts of North America. J. Biogeogr. 43, 1514-1532 [94] Van Iterson, M., Boer, J.M., Menezes, R.X., 2010. Filtering, FDR and power. BMC bioinformatics 11, 1-11 [95] Vittoz, P., Dussex, N., Wassef, J., et al., 2009. Diaspore traits discriminate good from weak colonisers on high-elevation summits. Basic Appl. Ecol. 10, 508-515 [96] Wheelwright, N.T., 1988. Fruit-eating birds and bird-dispersed plants in the tropics and temperate zone. Trends Ecol. Evol. 3, 270-274 [97] Willson, M.F., Irvine, A.K., Walsh, N.G., 1989. Vertebrate dispersal syndromes in some Australian and New Zealand plant-communities, with geographic comparisons. Biotropica 21, 133-147 [98] Willson, M.F., Graff, D.A., Whelan, C.J., 1990a. Color preferences of frugivorous birds in relation to the colors of fleshy fruits. Condor 92, 545-555 [99] Willson, M.F., Rice, B.L., Westoby, M., 1990b. Seed dispersal spectra:a comparison of temperate plant communities. J. Veg. Sci. 1, 547-562 [100] Willson, M.F., Sabag, C., Figueroa, J., et al., 1996. Seed dispersal by lizards in Chilean rainforest. Rev. Chil. Hist. Nat. 69, 339-342 [101] Wolfe J.A., 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere:Data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the earth's rotational axis. Am. Sci. 66, 694-703 [102] Wolfe J.A., Schorn H.E., Forest C.E., et al., 1997. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science 276, 1672-1675 [103] Xing, Y.W., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451 [104] Ye, X.Y., Ma, P.F., Yang, G.Q., et al., 2019. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. J. Biogeogr. 46, 2678-2689 [105] Yoder, J.B., Clancey E., Des Roches, S., et al., 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581-1596 [106] Young, L.M., Kelly, D., Nelson, X.J., 2012. Alpine flora may depend on declining frugivorous parrot for seed dispersal. Biol. Conserv. 147, 133-142 [107] Yu, Y., Harris, A.J., Blair, C., et al., 2015. RASP (Reconstruct Ancestral State in Phylogenies):a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46-49 [108] Zhang, Y.B., Li, X., Zhang, F., et al., 2012. A preliminary study of copy number variation in Tibetans. PLoS One 7, e41768 [109] Zoratti, L., Karppinen, K., Escobar, A.L., et al., 2014. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 5, 534 |
[1] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes) [J]. Plant Diversity, 2023, 45(06): 630-684. |
[2] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae) [J]. Plant Diversity, 2023, 45(05): 501-512. |
[3] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
[4] | Korina Ocampo-Zuleta, Ángela Parrado-Rosselli. Functional diversity in an Andean subpáramo affected by wildfire in Colombia [J]. Plant Diversity, 2023, 45(04): 385-396. |
[5] | Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China [J]. Plant Diversity, 2023, 45(03): 284-301. |
[6] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals [J]. Plant Diversity, 2023, 45(03): 347-352. |
[7] | Li-Guo Zhang, Xiao-Qian Li, Wei-Tao Jin, Yu-Juan Liu, Yao Zhao, Jun Rong, Xiao-Guo Xiang. Asymmetric migration dynamics of the tropical Asian and Australasian floras [J]. Plant Diversity, 2023, 45(01): 20-26. |
[8] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[9] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae) [J]. Plant Diversity, 2023, 45(01): 54-68. |
[10] | Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains [J]. Plant Diversity, 2023, 45(01): 80-97. |
[11] | Hong-Hu Meng, Can-Yu Zhang, Shook Ling Low, Lang Li, Jian-Yong Shen, Nurainas, Yu Zhang, Pei-Han Huang, Shi-Shun Zhou, Yun-Hong Tan, Jie Li. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae) [J]. Plant Diversity, 2022, 44(06): 552-564. |
[12] | Yi Jin, Hong Qian. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants [J]. Plant Diversity, 2022, 44(04): 335-339. |
[13] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data [J]. Plant Diversity, 2022, 44(03): 300-307. |
[14] | Lei Huang, Fang-Dong Geng, Jing-Jing Fan, Wei Zhai, Cheng Xue, Xiao-Hui Zhang, Yi Ren, Ju-Qing Kang. Evidence for two types of Aquilegia ecalcarata and its implications for adaptation to new environments [J]. Plant Diversity, 2022, 44(02): 153-162. |
[15] | Changkyun Kim, Dong-Kap Kim, Hang Sun, Joo-Hwan Kim. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea [J]. Plant Diversity, 2022, 44(02): 170-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||