Plant Diversity ›› 2023, Vol. 45 ›› Issue (03): 284-301.DOI: 10.1016/j.pld.2022.11.003
• Articles • Previous Articles Next Articles
Yu-Feng Gua,b, Jiang-Ping Shub, Yi-Jun Luc, Hui Shend, Wen Shaod, Yan Zhoue, Qi-Meng Sunf, Jian-Bing Chenb, Bao-Dong Liua, Yue-Hong Yanb
Received:
2022-06-27
Revised:
2022-10-24
Published:
2023-07-06
Contact:
Bao-Dong Liu,E-mail:99bd@163.com;Yue-Hong Yan,E-mail:yhyan@sibs.ac.cn
Supported by:
Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China[J]. Plant Diversity, 2023, 45(03): 284-301.
Add to citation manager EndNote|Ris|BibTeX
[1] Abbott, R., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246. [2] Alexander, D.H., Lange, K., 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinf. 12, 1-6. [3] An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoon and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62-66. [4] Andrew, R., 2018. FigTree version 1.4.2:tree figure drawing tool. Available from:http://tree.bio.ed.ac.uk/software/figtree. [5] Bandelt, H.J., Dress, A.W., 1992. Split decomposition:a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1, 242-252. [6] Barker, M.S., Kane, N.C., Matvienko, M., et al., 2008. Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 25, 2445-2455. [7] Barrett, C.F., Baker, W.J., Comer, J.R., et al., 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol. 209, 855-870. [8] Bhu, I., Goswami, H.K., 1990. A new line of chromosomal evolution in Isoetes. Bionature 10, 45-53. [9] Bickford, D., Lohman, D.J., Sodhi, N.S., et al., 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148-155. [10] Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., et al., 2019. Beast 2.5:an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 8, e1006650. [11] Bravo, G.A., Remsen, J.V., Brumfield, R.T., 2015. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae). Evolution 68, 2757-2774. [12] Chen, J.M., Liu, F., Gituru, W.R., et al., 2008. Chloroplast DNA phylogeography of the Chinese endemic alpine quillwort Isoetes hypsophila Hand.-Mazz. (Isoetaceae). Int. J. Plant Sci. 169, 792-798. [13] Chen, J.M., Liu, X., Wang, Q.F., 2005. Genetic diversity in Isoetes yunguiensis, a rare and endangered endemic fern in China. J. Wuhan Univ. (Nat. Sci. Ed.) 51, 767-770. [14] Chen, J.M., Wang, J.Y., Liu, X., et al., 2004. RAPD analysis for genetic diversity of Isoetes sinensis. Biodivers. Sci. 12, 348-353. [15] Choi, H.K., Jung, J., Na, H.R., et al., 2018. Molecular phylogeny and the biogeographic origin of East Asian Isoëtes (Isoëtaceae). Korean J. Plant Taxon. 48, 249-259. [16] Coates, D., 2016. Strategic Plan for Biodiversity (2011-2020) and the Aichi Biodiversity Targets:the Wetland Book I:Structure and Function, management, and methods 1-7. [17] Cuneo, R., 2009. Paleobotany:the biology and evolution of fossil plants. Ameghiniana 46, 218-218. [18] Dai, X.K., Li, X., Huang, Y.Q., et al., 2020. The speciation and adaptation of the polyploids:a case study of the Chinese Isoetes L. diploid-polyploid complex. BMC Evol. Biol. 20, 1-13. [19] Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. [20] Darwin, C., 1951. On the Origin of Species. sixth ed. [21] De, Q.K., 2007. Species concepts and species delimitation. Syst. Biol. 56, 879-886. [22] Devol, C.E., 1972. Isoetes found on taiwan. Taiwania 17, 1-7. [23] Dirzo, R., Raven, P.H., 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137-167. [24] Feulner, P.G.D., Kirschbaum, F., Schugardt, C., et al., 2006. Electrophysiological and molecular genetic evidence for sympatrically occurring cryptic species in African weakly electric fishes (Teleostei:mormyridae:Campylomormyrus). Mol. Phylogenet. Evol. 39, 198-208. [25] Fier, C., Robinson, C.T., Malard, F., 2017. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613-635. [26] Fontaneto, D., Flot, J.F.O., Tang, C.Q., 2015. Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar. Biodivs. 45, 433-451. [27] Foster, C.S.P., Henwood, M.J., Simon, H.Y.W., 2018. Plastome sequences and exploration of tree-space help to resolve the phylogeny of riceflowers (Thymelaeaceae:pimelea). Mol. Phylogenet. Evol. 127, 156-167. [28] Funk, D.J., Omland, K.E., 2003. Species-Level paraphyly and polyphyly:frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann. Rev. Ecol. Evol. 34, 397-423. [29] Gentili, R., Abeli, T., Rossi, G., et al., 2010. Population structure and genetic diversity of the threatened quillwort Isoetes malinverniana and implication for conservation. Aquat. Bot. 93, 147-152. [30] Gerard, T., Jose, C., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [31] Gifford, E.M., Foster, A.S., 1989. Morphology and Evolution of Vascular Plants. third ed. New York:W. H. Freman & Company. [32] Givnish, T.J., Ames, M., McNeal, J.R., et al., 2010. Assembling the tree of the monocotyledons:plastome sequence phylogeny and evolution of Poales. Ann. Mo. Bot. Gard. 97, 584-616. [33] Givnish, T.J., Spalink, D., Ames, M., et al., 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. P. Roy. Soc. B-Biol. Sci. 282, 20151553. [34] Gonalves-Souza, D., Verburg, P.H., Dobrovolski, R., 2020. Habitat loss, extinction predictability and conservation efforts in the terrestrial ecoregions. Biol. Conserv. 246, 108579. [35] Grundt, H.H., Kjolner, S., Borgen, L., et al., 2006. High biological species diversity in the arctic flora. Proc. Natl. Acad. Sci. U.S.A. 103, 972-975. [36] Handel-Mazzetti, H., 1923. Isoetes hypsophila Hand.-Mazz. Akad. Wiss. Wien 13, 95. [37] Harrison, T.M., Copeland, P., Kidd, W., et al., 1992. Raising tibet. Science 255, 1663-1670. [38] Hebert, P.D.N., Penton, E.H., Burns, J.M., et al., 2004. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101, 14812-14817. [39] Hickey, R.J., 1984. Chromosome numbers of neotropical Isoetes. Am. Fern J. 74, 9-13. [40] Hickey, R.J., 1986. Isoetes megaspore surface morphology:nomenclature, variation, and systematic importance. Am. Fern J. 76, 1-16. [41] Hinojosa, J.C., Koubinova, D., Szenteczki, M.A., et al., 2019. A mirage of cryptic species:genomics uncover striking mitonuclear discordance in the butterfly Thymelicus sylvestris. Mol. Ecol. 28, 3857-3868. [42] Hollingsworth, P.M., Li, D.Z., Michelle, v.d.B., et al., 2016. Telling plant species apart with DNA:from barcodes to genomes. Philos. T. R. Soc. B 371, 20150338. [43] Holmes, W.C., Rushing, A.E., Singhurst, J.R., 2005. Taxonomy and identification of Isoetes (Isoetaceae) in Texas based on megaspore features. Lundenllia 8, 1-6. [44] Hoot, S.B., Taylor, W.C., 2001. The utility of nuclear ITS, a LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation in Isoetes. Am. Fern J. 91, 166-177. [45] Ito, Y., Tanaka, N., Barfod, A.S., et al., 2019. Molecular phylogenetic species delimitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J. Plant Res. 132, 335-344. [46] Jansen, R.K., Saski, C., Lee, S.B., et al., 2011. Complete plastid genome sequences of three Rosids (Castanea, Prunus, Theobroma):evidence for at least two independent transfers of rpl22 to the nucleus. Mol. Biol. Evol. 28, 835-847. [47] Jiang, R.H., Zhang, X.C., Liu, Y., 2011. Asplenium cornutissimum (Aspleniaceae), a new species from karst caves in Guangxi, China. Brittonia 63, 83-86. [48] Jin, J.J., Yu, W.B., Yang, J., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. [49] Joppa, L.N., Roberts, D.L., Pimm, S.L., 2011. How many species of flowering plants are there? P. Roy. Soc. B-Biol. Sci. 278, 554-559. [50] Julio, R., Albert, F.M., Carlos, S.-D.J., et al., 2017. DnaSP 6:DNA Sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. [51] Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. [52] Kang, M., Ye, Q.G., Huang, H.W., 2005. Genetic consequence of restricted habitat and population decline in endangered Isoetes sinensis (Isoetaceae). Ann. Bot. 96, 1265-1274. [53] Karol, K.G., Arumuganathan, K., Boore, J.L., et al., 2010. Complete plastome sequences of Equisetum arvense and Isoetes flaccida:implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol. Biol. 10, 321. [54] Kim, C., Shin, H., Chang, Y.T., et al., 2010. Speciation pathway of Isoetes (Isoetaceae) in East Asia inferred from molecular phylogenetic relationships. Am. J. Bot. 2010, 97, 958-969. [55] Kim, C., Na, H.R., Choi, H.K., 2008. Genetic diversity and population structure of endangered Isoetes coreana in South Korea based on RAPD analysis. Aquat. Bot. 89, 43-49. [56] Kim, C.K., Choi, H.K., 2016. Biogeography of North Pacific Isoetes (Isoetaceae) inferred from nuclear and chloroplast DNA sequence data. J. Plant Biol. 59, 386-396. [57] Krug, P.J., Vendetti, J.E., Rodriguez, A.K., et al., 2013. Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control. Mol. Phylogenet. Evol. 69, 1101-1119. [58] Larsen, E., Wikstrom, N., Khodabandeh, A., et al., 2022. Phylogeny of Merlin's grass (Isoetaceae):revealing an "Amborella syndrome" and the importance of geographic distribution for understanding current and historical diversity. BMC Ecol. Evol. 22, 1-17. [59] Lees, A.C., Pimm, S.L., 2015. Species, extinct before we know them? Curr. Biol. 25, R177-R180. [60] Lellinger, D.B., Taylor, W.C., 1997. A classification of spore ornamentation in the pteridophyta. In R.J. John (Ed.), Holttum Memorial Volume London:Kew:Royal Botanical Garden. [61] Li, H., Handsaker, B., Wysoker, A., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. [62] Li, X., Huang, Y.Q., Dai, X.K., et al., 2019. Isoetes shangrilaensis, a new species of Isoetes from Hengduan mountain region of Shangri-la, Yunnan. Phytotaxa 397, 65-73. [63] Li, X.J., Li, J.X., Meng, F.Y., 2018. A new species of Hypodematium (Hypodematiaceae) from China. PhytoKeys 92, 37-44. [64] Li, X.W., Yang, F., Henry, R.J., et al., 2015. Plant DNA barcoding:from gene to genome. Biol. Rev. 90, 157-166. [65] Li, Z.Z., Ngarega, B.K., Lehtonen, S., et al., 2020. Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses. J. Plant Res. 133, 1-9. [66] Liu, H., Wang, Q.F., Taylor, W.C., 2005. Isoetes orientalis (Isoetaceae), a new hexaploid quillwort from China. Novon 15, 164-167. [67] Liu, J., Moller, M., Gao, L.M., et al., 2015. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Resour. 11, 89-100. [68] Liu, J.J., Slik, F., Zheng, S.L., et al., 2022. Undescribed species have higher extinction risk than known species. Conserv. Lett. 15, 1-8. [69] Liu, L., Pearl, D.K., 2007. Species trees from gene trees:reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst. Biol. 56, 504-514. [70] Liu, X., Gituru, W.R., Wang, Q.F., 2004. Distribution of basic diploid and polyploid species of Isoetes in East Asia. J. Biogeogr. 31, 1239-1250. [71] Liu, X., Liu, H., Wang, Q.F., 2008. Spore morphology of Isoetes (Isoetaceae) from China. Acta Phytotaxon. Sin. 46, 479-489. [72] Liu, X., Wang, Y., Wang, Q.F., et al., 2002. Chromosome numbers of the Chinese Isoetes and their taxonomical significance. Acta Phytotaxon. Sin. 40, 351-356. [73] Lombard, L., Crous, P.W., Wingfield, B.D., et al., 2010. Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pauciramosa. Stud. Mycol. 66, 15-30. [74] Lu, J.M., Zhang, N., Du, X.Y., et al., 2015. Chloroplast phylogenomics resolves key relationships in ferns. J. Systemat. Evol. 53, 448-457. [75] Lu, Y.J., Gu, Y.F., Yan, Y.H., 2021. Isoetes baodongii (Isoetaceae), a new basic diploid species of quillwort from China. Novon 29, 206-210. [76] Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 3, 523-536. [77] Maddison, W.P., Lacey, K.L., 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21-30. [78] Malcolm, J.R., Liu, C., Neilson, R.P., et al., 2010. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538-548. [79] Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283. [80] May, R.M., 1988. How many species are there on earth? Science 241, 1441-1449. [81] May, R.M., 1990. How many species? Philos. T. R. Soc. B 330, 293-303. [82] Meng, F.S., 1998. Studies on Annalepis from middle triassic along the YangZi river and ITS bearing on the origin of Isoetes. J. Integr. Plant Biol. 8, 89-95. [83] Meng, F.S., Zhang, Z.L., Niu, Z.J., et al., 2000. Primitive Lycopsid Flora in the Yangtze Valley of China and Systematics and Evolution of Isoetales. Changsha, Hunan:Hunan Science and Technology Press. [84] Moraolivo, A., Mendozaruiz, A., Martinezavalos, J.G., 2016. Isoetes tamaulipana (Isoetaceae), a new species from Mexico. Phytotaxa 267, 113-120. [85] Nguyen, L.T., Schmidt, H.A., Arndt, V.H., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [86] Nie, Y., Foster, C.S., Zhu, T., et al., 2020. Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies. Syst. Biol. 69, 1-16. [87] Nygren, A., 2014. Cryptic polychaete diversity:a review. Zool. Scripta 43, 172-183. [88] Palmer, T.C., 1927. A Chinese Isoetes-I. sinensis. Am. Fern J. 7, 111-113. [89] Pang, X.A., Wang, Q.F., Robert, G.W., et al., 2003. A preliminary study of crassulacean acid metabolism (CAM) in the endangered aquatic quillwort Isoetes sinensis Palmer in China. Wuhan Univ. J. Nat. Sci. 8, 455-458. [90] Pante, E., Puillandre, N., Viricel, A., et al., 2015. Species are hypotheses:avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24, 525-544. [91] Pereira, J.B.D.S., Salino, A., Arrdua, A., et al., 2016. Two new species of Isoetes (Isoetaceae) from northern Brazil. Phytotaxa 272, 141-148. [92] Pereira, J.B.S., Giulietti, A.M., Pires, E.S., et al., 2021a. Chloroplast genomes of key species shed light on the evolution of the ancient genus Isoetes. J. Systemat. Evol. 59, 421-441. [93] Pereira, J.B.S., Giulietti, A.M., Prado, J., et al., 2021b. Plastome-based phylogenomics elucidate relationships in rare Isoetes species groups from the Neotropics. Mol. Phylogenet. Evol. 161, 107177. [94] Pereira, J.B.S., Guimaraes, J.T.F., Watanabe, M.T.C., 2019a. Isoetes dubsii and Isoetes santacruzensis, two new species from lowland areas in South America. PhytoKeys 131, 57-67. [95] Pereira, J.B.S., Labiak, P.H., Thomas, S., et al., 2019b. Nuclear multi-locus phylogenetic inferences of polyploid Isoetes species (Isoetaceae) suggest several unknown diploid progenitors and a new polyploid species from South America. Bot. J. Linn. Soc. 189, 6-22. [96] Pereira, J.B.S., Stutzel, T., Schulz, C., 2017. Isoetes nana, a new species from the coastal mountains of southeastern Brazil. PhytoKeys 89, 91-105. [97] Peter, T., Douady, C.J., Cene, F., et al., 2009. A molecular test for cryptic diversity in ground water:how large are the ranges of macro-stygobionts? Freshw. Biol. 54, 727-744. [98] Peters, J.L., Zhuravlev, Y., Fefelov, I., et al., 2007. Nuclear loci and coalescent methods suppot ancient hybridization as cause of mitochondrial paraphyly between gadwall and falcated duck (Anas spp.). Evolution 61, 1992-2006. [99] Pfeiffer, N.E., 1922. Monograph on the Isoetaceae. Ann. Mo. Bot. Gard. 9, 79-233. [100] Pigg, K.B., 1992. Evolution of isoetalean lycopsids. Ann. Mo. Bot. Gard. 79, 589-612. [101] Pigg, K.B., 2001. Isoetalean lycopsid evolution:from the Devonian to the present. Am. Fern J. 91, 99-114. [102] Pillon, Y., Hopkins, H., Munzinger, J., et al., 2010. Cryptic species, gene recombination and hybridization in the genus Spiraeanthemum (Cunoniaceae) from New Caledonia. Bot. J. Linn. Soc. 161, 137-152. [103] Pimm, S.L., Jenkins, C.N., Abell, R., et al., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752. [104] Prance, G.T., Beentje, H., Dransfield, J., et al., 2000. The Tropical flora remains under collected. Ann. Mo. Bot. Gard. 87, 67-71. [105] Ranker, T.A., 1993. Spores of the Pteridophyta:surface, wall structure, and diversity based on electron microscope studies. Syst. Bot. 18, 377. [106] Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science 317, 910-914. [107] Romero, M.I., Real, C. 2015. A morphometric study of three closely related taxa in the European Isoetes velata complex. Bot. J. Linn. Soc. 148, 459-464. [108] Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. [109] Ross, T.G., Barrett, C.F., Gomez, M.S., et al., 2016. Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 32, 160-178. [110] Ruhfel, B.R., Gitzendanner, M.A., Soltis, P.S., et al., 2014. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23. [111] Saez, A.G., Lozano, E., 2005. Body doubles. Nature 433, 111. [112] Santos, M.P., Araujo, J.V.S.R., Lopes, A.V.S.A., et al., 2020. The genetic diversity and population structure of two endemic Amazonian quillwort (Isoetes L.) species. PeerJ 8, e10274. [113] Schafran, P.W., 2019. Molecular systematics of Isoetes (Isoetaceae) in Eastern North America. Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University. [114] Schafran, P.W., Leonard, S.W., Bray, R.D., et al., 2016. Isoetes mississippiensis:a new quillwort from Mississippi, USA. PhytoKeys 74, 97-106. [115] Schafran, P.W., Zimmer, E.A., Taylor, W.C., et al., 2018. A whole chloroplast genome phylogeny of diploid species of Isoetes (Isoetaceae, Lycopodiophyta) in the Southeastern United States. Castanea 83, 224-235. [116] Scheffers, B.R., Joppa, L.N., Pimm, S.L., et al., 2012. What we know and don't know about earth's missing biodiversity. Trends Ecol. Evol. 27, 501-510. [117] Shang, H., Xue, Z.Q., Gu, Y.F., et al., 2020. Revision of the fern genus Didymochlaena (didymochlaenaceae) from Madagascar. Phytotaxa 459, 252-264. [118] Shu, J.P., Gu, YF, Ou, ZG, et al., 2022. Two new tetraploid quillwort species, Isoetes longpingii and I. xiangfei from China. Guihaia 42, 1623-1631. [119] Simpson, G.G., 1961. Principles of Animal Taxonomy. Columbia University Press, New York. [120] Smolders, A.J.P., Lucassen, E.C.H.R.T., Roelofs, J.G.M., 2002. The isoetid environment:biogeochemistry and threats. Aquat. Bot. 73, 325-350. [121] Struck, T.H., Feder, J.L., Bendiksby, M., et al., 2018. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153. [122] Suissa, J.S., Kinosian, S.P., Schafran, P.W., et al., 2020. Revealing the evolutionary history of a reticulate polyploid complex in the genus Isoetes. bioRxiv, https://doi.org/https://doi.org/10.1101/2022.11.11.516104. [123] Takamiya, M., Watanabe, M., Ono, K., 1994. Biosystematic studies on the genus Isoetes in Japan I. Variations of the somatic chromosome numbers. J. Plant Res. 107, 289-297. [124] Taylor, W.C., Hickey, R.J., 1992. Habitat, evolution, and speciation in Isoetes. Ann. Mo. Bot. Gard. 79, 613-622. [125] Taylor, W.C., Lekschas, A.R., Wang, Q.F., et al., 2004. Phylogenetic relationships of Isoetes (Isoetaceae) in China as revealed by nucleotide sequences of the nuclear ribosomal ITS region and the second Intron of a LEAFY Homolog. Am. Fern J. 94, 196-205. [126] Thompson, M.S.A., Couce, E., Webb, T.J., et al., 2020. What's hot and what's not:making sense of biodiversity 'hotspots'. Global Change Biol. 27, 521-535. [127] Tollefson, J., 2019. Humans are driving one million species to extinction. Nature 569, 171-172. [128] Troia, A., Pereira, J.B., Kim, C., et al., 2016. The genus Isoetes (Isoetaceae):a provisional checklist of the accepted and unresolved taxa. Phytotaxa 277, 101-145. [129] Vrijenhoek, R.C., Schutz, S.J., Gustafson, R.G., et al., 1994. Cryptic species of deep-sea clams (Mollusca:Bivalvia:vesicomyidae) from hydrothermal vent and cold-water seep environments-ScienceDirect. Deep-Sea Res. Pt. I 41, 1171-1189. [130] Vuuren, D.P.v., Sala, O.E., Pereira, H.M., 2006. The future of vascular plant diversity under four global scenarios. Ecol. Soc. 11, 3213-3217. [131] Wang, H., Dai, J., Chen, Z., et al., 2022. Selaginella orientali-chinensis, a new resurrection spikemoss species from southeastern China based on morphological and molecular evidences. Acta Sci. Nat. Univ. Sunyatseni 61, 57-64. [132] Wang, J.Y., Gituru, R.W., Wang, Q.F., 2006. Ecology and conservation of the endangered quillwort Isoetes sinensis in China. Egypt. J. Nat. Hist. 39, 4069-4079. [133] Wang, Q.F., Liu, X., Taylor, W.C., et al., 2002. Isoetes yunguiensis (Isoetaceae), a new basic diploid quillwort from China. Novon 12, 587-591. [134] Wang, Q.X., Dai, X.L., 2010. Spores of Polypodiales (Filicales) from China. Beijing:Science Press. [135] Wang, Q.X., Yu, J., 2003. Classification of spore ornamentation in Filicales under SEM. Acta Bot. Yunnanica 25, 313-320. [136] Watanabe, M., Takamiya, M., Matsusaka, T., et al., 1996. Biosystematic studies on the genus Isoetes (Isoetaceae) in Japan. III. Variability within qualitative and quantitative morphology of spores. J. Plant Res. 109, 281-296. [137] Wei, R., Yan, Y.H., Harris, A.J., et al., 2017. Plastid phylogenomics resolve deep relationships among eupolypod II ferns with rapid radiation and rate heterogeneity. Genome Biol. Evol. 9, 1646-1657. [138] Wei, R., Zhang, X.C., 2019. Phylogeny of Diplazium (Athyriaceae) revisited:resolving the backbone relationships based on plastid genomes and phylogenetic tree space analysis. Mol. Phylogenet. Evol. 143, 106699. [139] Wei, R., Zhang, X.C., 2022. A revised subfamilial classification of Polypodiaceae based on plastome, nuclear ribosomal, and morphological evidence. Toxon 71, 288-306. [140] Wei, Z.Y., Xia, Z.Q., Shu, J.P., et al., 2021. Phylogeny and taxonomy on cryptic species of forked ferns of Asia. Front. Plant Sci. 12, 748562. [141] Welch, A.J., Collins, K., Ratan, A., et al., 2016. The quest to resolve recent radiations:plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae). Mol. Phylogenet. Evol. 99, 16-33. [142] Wick, R.R., Schultz, M.B., Justin, Z., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [143] Winker, K., 2005. Sibling species were first recognized by William Derham (1718). Auk. 122, 706-707. [144] Wood, D., Besnard, G., Beerling, D.J., et al., 2020. Phylogenomics indicates the "living fossil" Isoetes diversified in the Cenozoic. PLoS One 15, e0227525. [145] Xie, Y.C., Cheng, H.S., Chen, Y., et al., 2019. Complete chloroplast genome of Isoetes sinensis, an endemic fern in China. Mitochondrial DNA B 4, 3276-3277. [146] Xu, K.W., Lin, C.X., Guo, J.Q., et al., 2022. Asplenium danxiaense sp. nov. (Aspleniaceae, Aspleniineae), a new tetraploid fern species from Guangdong, China, based on morphological and molecular data. Eur. J. Taxon. 798, 162-173. [147] Xu, K.W., Lorence, D., Wood, KR, et al., 2019a. A revision of the Hymenasplenium unilaterale subclade (Aspleniaceae; Pteridophyta) with the description of nine new species. Phytotaxa 419, 1-27. [148] Xu, K.W., Chen, C.W., Kamau, P., et al., 2019b. Four new species of the fern genus Hymenasplenium (Aspleniaceae) from africa and Asia. Phytotaxa 416, 34-42. [149] Yang, J., Huang, Y., Jiang, X., et al., 2022. Potential geographical distribution of the endangered plant Isoetes under human activities using MaxEnt and GARP. Global Ecol. Conser. 38, e02186. [150] Ye, Q.G., Li, J.Q. 2003. Distribution status and causation of endangerment of Isoetes sinensis palmer in Zhejiang Province. J. Wuhan Bot. Res. 21, 216-220. [151] Yi, T.S., Jin, G.H., Wen, J., 2015. Chloroplast capture and intra- and inter-continental biogeographic diversification in the Asian-new World disjunct plant genus Osmorhiza (Apiaceae). Mol. Phylogenet. Evol. 85, 10-21. [152] Yu, J.H., Zhang, R., Liu, Q.L., et al., 2022. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data. Plant Divers. 44, 300-307. [153] Zhang, D., Gao, F., Jakovli, I., et al., 2020a. PhyloSuite:an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. [154] Zhang, R., Wang, F.G., Zhang, J., et al., 2019. Dating whole genome duplication in Ceratopteris thalictroides and potential adaptive values of retained gene duplicates. Int. J. Mol. Sci. 20, 1926. [155] Zhang, R., Yu, J.H., Shao, W., et al., 2020b. Ceratopteris shingii, a new species of Ceratopteris with creeping rhizomes from Hainan, China. Phytotaxa 449, 23-30. |
[1] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes) [J]. Plant Diversity, 2023, 45(06): 630-684. |
[2] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae) [J]. Plant Diversity, 2023, 45(05): 501-512. |
[3] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
[4] | Xue-Min Xu, Dan-Hui Liu, Shi-Xin Zhu, Zhen-Long Wang, Zhen Wei, Quan-Ru Liu. Phylogeny of Trigonotis in China—with a special reference to its nutlet morphology and plastid genome [J]. Plant Diversity, 2023, 45(04): 409-421. |
[5] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals [J]. Plant Diversity, 2023, 45(03): 347-352. |
[6] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae) [J]. Plant Diversity, 2023, 45(01): 6-19. |
[7] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[8] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae) [J]. Plant Diversity, 2023, 45(01): 54-68. |
[9] | Hong-Hu Meng, Can-Yu Zhang, Shook Ling Low, Lang Li, Jian-Yong Shen, Nurainas, Yu Zhang, Pei-Han Huang, Shi-Shun Zhou, Yun-Hong Tan, Jie Li. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae) [J]. Plant Diversity, 2022, 44(06): 552-564. |
[10] | Yi Jin, Hong Qian. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants [J]. Plant Diversity, 2022, 44(04): 335-339. |
[11] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data [J]. Plant Diversity, 2022, 44(03): 300-307. |
[12] | Lei Huang, Fang-Dong Geng, Jing-Jing Fan, Wei Zhai, Cheng Xue, Xiao-Hui Zhang, Yi Ren, Ju-Qing Kang. Evidence for two types of Aquilegia ecalcarata and its implications for adaptation to new environments [J]. Plant Diversity, 2022, 44(02): 153-162. |
[13] | Zheng-Yu Zuo, Ting Zhao, Xin-Yu Du, Yun Xiong, Jin-Mei Lu, De-Zhu Li. A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species [J]. Plant Diversity, 2022, 44(02): 181-190. |
[14] | Zhen-Yu Lv, Ziyoviddin Yusupov, Dai-Gui Zhang, Ya-Zhou Zhang, Xiao-Shuang Zhang, Nan Lin, Komiljon Tojibaev, Hang Sun, Tao Deng. Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China [J]. Plant Diversity, 2022, 44(02): 222-230. |
[15] | Ying-Min Zhang, Li-Jun Han, Cong-Wei Yang, Zi-Li Yin, Xing Tian, Zi-Gang Qian, Guo-Dong Li. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships [J]. Plant Diversity, 2022, 44(01): 70-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||