Plant Diversity ›› 2025, Vol. 47 ›› Issue (02): 229-243.DOI: 10.1016/j.pld.2024.11.004
• Articles • Previous Articles
Amos Kipkoecha,c, Ke Lia,d, Richard I. Milnee, Oyetola Olusegun Oyebanjif,g, Moses C. Wambulwah, Xiao-Gang Fua,c, Dennis A. Wakhungub,c, Zeng-Yuan Wua, Jie Liua,b
Received:
2024-04-03
Revised:
2024-11-19
Published:
2025-04-03
Contact:
Zeng-Yuan Wu,E-mail:wuzengyuan@mail.kib.ac.cn;Jie Liu,E-mail:liujie@mail.kib.ac.cn
Supported by:
Amos Kipkoech, Ke Li, Richard I. Milne, Oyetola Olusegun Oyebanji, Moses C. Wambulwa, Xiao-Gang Fu, Dennis A. Wakhungu, Zeng-Yuan Wu, Jie Liu. An integrative approach clarifies species delimitation and biogeographic history of Debregeasia (Urticaceae)[J]. Plant Diversity, 2025, 47(02): 229-243.
Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophot. Int. 11, 36-42. Almubayedh, H., Ahmad, R., 2019. Ethnopharmacological uses, phytochemistry, biological activities of Debregeasia salicifolia: a review. J. Ethnopharmacol. 231, 179-186. https://doi.org/10.1016/j.jep.2018.11.023. Amenu, S.G., Wei, N., Wu, L., et al., 2022. Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): deep insights into phylogenetic relationships and plastome evolution. BMC Plant Biol. 22, 88. https://doi.org/10.1186/s12870-022-03480-5. Amiryousefi, A., Hyvonen, J., Poczai, P., 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031. https://doi.org/10.1093/bioinformatics/bty220. An, Z., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62-66. https://doi.org/10.1038/35075035. Bezanson, J., Edelman, A., Karpinski, S., Shah, V. B., 2017. Julia: a fresh approach to numerical computing. SIAM Rev., 59, 65-98. https://doi.org/10.1137/141000671. Bouckaert, R., Heled, J., Kuhnert, D., et al., 2014. Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537. Bruun-Lund, S., Clement, W.L., Kjellberg, F., et al., 2017. First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol. Phylogenet. Evol. 109, 93-104. https://doi.org/10.1016/j.ympev.2016.12.031. CBOL Plant Working Group., 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U.S.A. 106, 12794-12797. https://doi.org/10.1073/pnas.0905845106. Chen, CJ, Lin, Q., Friis, I., et al., 2003. Urticaceae. In: Wu, ZY, Raven, PH (Eds.), Flora of China, vol. vols. 76-1. Beijing: Science Press, St. Petersburg. St. Louis: Missouri Botanical Garden Press, pp. 107-111. Chen, H.Y., Zhang, Z.R., Yao, X., et al., 2024. Plastid phylogenomics provides new insights into the systematics, diversification, and biogeography of Cymbidium (Orchidaceae). Plant Diver. 46, 448-461. https://doi.org/10.1016/j.pld.2024.03.001. Coissac, E., Hollingsworth, P. M., Lavergne, S., et al., 2016. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423-1428. https://doi.org/10.1111/mec.13549. Conn, B.J., Hadiah, J.T., 2009. Nomenclature of tribes within the Urticaceae. Kew Bull. 64, 349-352. https://doi.org/10.1007/s12225-009-9108-4. Darling, A.E., Mau, B., Perna, N.T., 2010. progressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement. PLoS One 5, e11147. https://doi.org/10.1371/journal.pone.0011147. Darriba, D., Taboada, G.L., Doallo, R., et al., 2012. jModelTest 2: more models, new heuristics, and high-performance computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109.PMID:22847109;PMCID:PMC4594756. Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull. 19, 11–15. Folk, R.A., Mandel, J.R., Freudenstein, J.V., 2017. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst. Biol. 66, 320-337. https://doi.org/10.1093/sysbio/syw083. Frazer, K.A., Pachter, L., Poliakov, A., et al., 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273-W279. https://doi.org/10.1093/nar/gkh458. Fu, C.-N., Wu, C.-S., Ye, L.-J., et al., 2019. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. https://doi.org/10.1038/s41598-019-39161-x. Fu, C-N., Mo, Z.Q., Yang, J.B., et al., 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol. Ecol. Resour. 22, 404-414. https://doi.org/10.1111/1755-0998.13479. Fu, Q.-L., Mo, Z.-Q., Xiang, X.-G., et al., 2023. Plastome phylogenomics and morphological traits analyses provide new insights into the phylogenetic position, species delimitation and speciation of Triplostegia (Caprifoliaceae). BMC Plant Biol. 23, 645. https://doi.org/10.1186/s12870-023-04663-4. Gu, T. T., Wu, H., Yang, F., et al., 2023. Genomic analysis reveals a cryptic pangolin species. Proc. Natl. Acad. Sci. U.S.A. 120, 40. doi:10.1073/pnas.2304096120. Gu, W., Zhang, T., Liu, S.Y., et al., 2024. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae. Plant Diver. https://doi.org/10.1016/j.pld.2024.07.001. Guo, C., Ma, P.-F., Yang, G.-Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. https://doi.org/10.1093/sysbio/syaa076. Hadiah, J.T., Conn, B.J., Quinn, C.J., 2008. Infra-familial phylogeny of Urticaceae, using chloroplast sequence data. Aust. Syst. Bot. 21, 375-385. https://doi.org/10.1071/SB08041. Harris, J. G., Harris, M. W., 1994. Plant Identification Terminology: an Illustrated Glossary (p. 198). Utah: Spring lake publishing. Hebert, P.D., Cywinska, A., Ball, S.L., et al., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313-321. https://doi.org/10.1098/rspb.2002.2218. Hollingsworth, P.M., Li, D.-Z., van der Bank, M., et al., 2016. Telling plant species apart with DNA: from barcodes to genomes. Phil. Trans. Biol. Sci. 371, 20150338. https://doi.org/10.1098/rstb.2015.0338. Hong, D.-Y., 2016. Biodiversity pursuits need a scientific and operative species concept. Biodivers. Sci. 24, 979. https://doi.org/10.17520/biods.2016203. Ji, Y., Liu, C., Yang, Z., et al., 2019. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333-1345. https://doi.org/10.1111/1755-0998.13050. Jiang, Y., Yang, J., Folk, R.A., et al., 2024. Species delimitation of tea plants (Camellia sect. Thea) based on super-barcodes. BMC Plant Biol. 24, 181. https://doi.org/10.1186/s12870-024-04882-3. Jin, J.-J., Yu, W.-B., Yang, J.-B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. https://doi.org/10.1186/s13059-020-02154-5. Johnson, M. G., Pokorny, L., Dodsworth, S., et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst. Biol. 68, 594-606. https://doi.org/10.1093/sysbio/syy086. Kane, N., Sveinsson, S., Dempewolf, H., et al., 2012. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320e329. doi:10.3732/ajb.1100570. Kapli, P., Lutteropp, S., Zhang, J., et al., 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630-1638. https://doi.org/10.1093/bioinformatics/btx025. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199. Kim, C., Deng, T., Chase, M., et al., 2015. Generic phylogeny and character evolution in Urticeae (Urticaceae) inferred from nuclear and plastid DNA regions. Taxon 64, 65-78. https://doi.org/10.12705/641.20. Kong, H.H., Condamine, F.L., Harris, A.J., et al., 2017. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol. Ecol. 26, 6414-6429. https://doi.org/10.1111/mec.14367. Li, D. Z., Gao, L. M., Li, H. T., et al., 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. U.S.A. 108, 19641-19646. https://doi.org/10.1073/pnas.1104551108. Li, D., Liu, C. M., Luo, R., et al., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676. https://doi.org/10.1093/bioinformatics/btv033. Li, J., Tang, J., Zeng, S., et al., 2021. Comparative plastid genomics of four Pilea (Urticaceae) species: insight into interspecific plastid genome diversity in Pilea. BMC Plant Biol. 21, 1-13. https://doi.org/10.1186/s12870-020-02793-7. Li, K., Zhang, H., Shi, M., et al., 2022. The complete chloroplast genome sequence of Urtica fissa. Mitochondrial DNA B. 7, 1005-1007. https://doi.org/10.1080/23802359.2022.2080017. Li, W., Liu, Y., Yang, Y., et al., 2018. Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros. BMC Plant Biol. 18, 1-11. https://doi.org/10.1186/s12870-018-1421-3. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. https://doi.org/10.1093/bioinformatics/btp187. Liu, B.B., Ren, C., Kwak, M., et al., 2022. Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. J. Integr. Plant Biol. 64, 1020-1043. https://doi.org/10.1111/jipb.13246. Liu, J., Milne, R.I., Moller, M., et al., 2018. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Mol. Ecol. Resour. 18, 1115-1131. https://doi.org/10.1111/1755-0998.12903. Liu, J., Moeller, M., Gao, L.M., et al., 2011. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Resour. 11, 89-100. https://doi.org/10.1111/j.1755-0998.2010.02907.x. Loiseau, O., Mota Machado, T., Paris, M., et al., 2021. Genome skimming reveals widespread hybridization in a Neotropical flowering plant radiation. Front. Ecol. Evol. 9, 668281. https://doi.org/10.3389/fevo.2021.668281. Low, S. L., Yu, C. C., Ooi, I. H., et al., 2021. Extensive Miocene speciation in and out of Indochina: the biogeographic history of Typhonium sensu stricto (Araceae) and its implication for the assembly of Indochina flora. J. Systemat. Evol. 59, 419-428. https://doi.org/10.1111/jse.12689. Lu, L.M., Hu, H.H., Peng, D.X., et al., 2020. Noise does not equal bias in assessing the evolutionary history of the angiosperm flora of China: a response to Qian (2019). J. Biogeogr. 47, 2286-2291. https://doi.org/10.1111/jbi.13947. Maddison, W.P., 2007. Mesquite: a modular system for evolutionary analysis. Version 2.0. https://cir.nii.ac.jp/all?q=http://mesquiteproject.org. Magoga, G., Fontaneto, D., Montagna, M., 2021. Factors affecting the efficiency of molecular species delimitation in a species-rich insect family. Mol. Ecol. Resour. 21, 1475-1489. https://doi.org/10.1111/1755-0998.13352. Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283. https://doi.org/10.1038/nature05706. Maurin, K.J.L., 2020. An empirical guide for producing a dated phylogeny with treePL in a maximum likelihood framework. arXiv, 2008.07054v2. https://arxiv.org/pdf/2008.07054. Mishra, P., Kumar, A., Nagireddy, A., et al., 2016. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol. J. 14, 8-21. https://doi.org/10.1111/pbi.12419. Morales-Briones, D. F., Kadereit, G., Tefarikis, D. T., et al., 2021. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst. Biol. 70, 219-235. https://doi.org/10.1093/sysbio/syaa066. Ogoma, C.A., Liu, J., Stull, G.W., et al., 2022. Deep insights into the plastome evolution and phylogenetic relationships of the tribe Urticeae (Family Urticaceae). Front. Plant Sci. 13, 870949. https://doi.org/10.3389/fpls.2022.870949. Ortiz, E. M., Hoewener, A., Shigita, G., et al., 2023. A novel phylogenomics pipeline reveals complex pattern of reticulate evolution in Cucurbitales. bioRxiv, 2023-10. https://doi.org/10.1101/2023.10.27.564367. Oyebanji, O., Zhang, R., Chen, S.-Y., et al., 2020. New insights into the plastome evolution of the Millettioid/Phaseoloid clade (Papilionoideae, Leguminosae). Front. Plant Sci. 11, 151. https://doi.org/10.3389/fpls.2020.00151. Park, S., An, B., Park, S., 2018. Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation. Sci. Rep. 8, 13568. https://doi.org/10.1038/s41598-018-31938-w. Peng, D.X., Dang, V.C., Habib, S., et al., 2021. Historical biogeography of Tetrastigma (Vitaceae): insights into floristic exchange patterns between Asia and Australia. Cladistics 37, 803-815. https://doi.org/10.1111/cla.12462. Petit, R.J., Excoffier, L., 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386-393. https://doi.org/10.1016/j.tree.2009.02.011. Plants of the World Online, 2024. Royal Botanic Gardens, Kew. Available at: https://powo.science.kew.org/. Accessed 13 March 2024. Pons, J., Barraclough, T.G., Gomez-Zurita, J., et al., 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595-609. https://doi.org/10.1080/10635150600852011. Puillandre, N., Brouillet, S., Achaz, G., 2021. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609-620. https://doi.org/10.1111/1755-0998.13281. Puillandre, N., Lambert, A., Brouillet, S., et al., 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x. R Core Team, 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org. Rambaut, A., 2009. FigTree. Inst. Evol. Biol., Univ. Edinburgh, Edinburgh, UK. http://tree.bio.ed.ac.uk/software/figtree/. Ravinet, M., Faria, R., Butlin, R. K., et al., 2017. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30, 1450-1477. https://doi.org/10.1111/jeb.13047. Ren, B.Q., Xiang, X.G., Chen, Z.D., 2010. Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Mol. Ecol. Resour. 10, 594-605. https://doi.org/10.1111/j.1755-0998.2009.02815.x. Sarmashghi, S., Bohmann, K., Gilbert, P., et al., 2019. Skmer: Assembly-free and alignment-free sample identification using genome skims. Genome Biol. 20, 1–20. doi:10.1186/s13059-019-1632-4. Schattner, P., Brooks, A.N., Lowe, T.M., 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686-W689. https://doi.org/10.1093/nar/gki366. Shen, Z., Lu, T., Zhang, Z., et al., 2019. Authentication of traditional Chinese medicinal herb “Gusuibu” by DNA-based molecular methods. Ind. Crops Prod. 141, 111756. https://doi.org/10.1016/j.indcrop.2019.111756. Singh, H.K., Parveen, I., Raghuvanshi, S., et al., 2012. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species. BMC Res. Notes 5, 1-11. https://doi.org/10.1186/1756-0500-5-42. Slipiko, M., Myszczynski, K., Buczkowska, K., et al., 2020. Molecular delimitation of European leafy liverworts of the genus Calypogeia based on plastid super-barcodes. BMC Plant Biol. 20, 1-15. https://doi.org/10.1186/s12870-020-02435-y. Smith, S. A., Moore, M. J., Brown, J. W., Yang, Y., 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 1-15. https://doi.org/10.1186/s12862-015-0423-0. Smith, S. A., O’Meara, B. C., 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690. https://doi.org/10.1093/bioinformatics/bts492. Solis-Lemus, C., Bastide, P., Ane, C., 2017. PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292-3298. https://doi.org/10.1093/molbev/msx235. Swofford, D.L., 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland. Tong, R., Gui, C., Zhang, Y., et al., 2022. Phylogenomics, plastome structure and species identification in Mahonia (Berberidaceae). BMC Genom. 23, 766. https://doi.org/10.1186/s12864-022-08964-0. Tseng, Y.-H., Monro, A.K., Wei, Y.-G., et al., 2019. Molecular phylogeny and morphology of Elatostema s.l. (Urticaceae): implications for inter-and infrageneric classifications. Mol. Phylogenet. Evol. 132, 251-264. https://doi.org/10.1016/j.ympev.2018.11.016. Wang, H.-X., Liu, H., Moore, M.J., et al., 2020a. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Mol. Phylogenet. Evol. 142, 106641. https://doi.org/10.1016/j.ympev.2019.106641. Wang, J., Fu, C.-N., Yang, J.-B., et al., 2022. Testing the complete plastome for species discrimination, cryptic species discovery, and phylogenetic resolution in Cephalotaxus (Cephalotaxaceae). Front. Genet. 13, 768810. https://doi.org/10.3389/fpls.2022.768810. Wang, R.-N., Milne, R.I., Du, X.-Y., et al., 2020b. Characteristics and mutational hotspots of plastomes in Debregeasia (Urticaceae). Front. Genet. 11, 527033. https://doi.org/10.3389/fgene.2020.00729. Wang, W., 2016. Two new species of Urticaceae from China. Bull. Bot. Res. 36, 481-483. https://doi.org/10.7525/j.issn.1673-5102.2016.04.001. Weddell, H.A., 1854. Revue de la famille des Urticacées. Ann. Sci. Nat. Bot. Sér. 4, 173–212. Weddell, H. A. (1869). Urticaceae. In: Candolle, A. de (Eds.), Prodromus Systematis Naturalis Regnis Vegetabilis. Paris: V. Masson, pp. 32-235. Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. https://doi.org/10.1093/bioinformatics/btv383. Wilmot-Dear, C., 1988. An account of the genus Debregeasia (Urticaceae-Boehmerieae). Kew Bull. 673-692. https://doi.org/10.2307/4129966. Wilmot-Dear, C., 1994. Debregeasia ceylanica (Urticaceae): a change of status. Kew Bull. 49, 468. https://doi.org/10.2307/4114470. Wilmot-Dear, C., Friis, I., 2012. Debregeasia australis sp. nov. (Urticaceae), with a new synopsis of and a new key to the genus. Edinb. J. Bot. 69, 301-311. https://doi.org/10.1017/S096042861200011X. Wu, X., Liu, X., Kodrul, T., et al., 2019. Dacrycarpus pattern shedding new light on the early floristic exchange between Asia and Australia. Natl. Sci. Rev. 6, 1086-1090. https://doi.org/10.1093/nsr/nwz060. Wu, Z. Y., Chapman, M. A., Liu, J., et al., 2024. Genomic variation, environmental adaptation, and feralization in ramie, an ancient fiber crop. Plant Commun. 5, 100942. doi:10.1016/j.xplc.2024.100942. Wu, Y., Hipp, A.L., Fargo, G., et al., 2023. Improving species delimitation for effective conservation: a case study in the endemic maple-leaf oak (Quercus acerifolia). New Phytol. 238, 1278-1293. Wu, Z.-Y., Liu, J., Provan, J., et al., 2018. Testing Darwin’s transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecol. Lett. 21, 1515-1529. https://doi.org/10.1111/ele.13132. Wu, Z.-Y., Milne, R.I., Chen, C.-J., et al., 2015. Ancestral state reconstruction reveals rampant homoplasy of diagnostic morphological characters in Urticaceae, conflicting with current classification schemes. PLoS One 10, e0141821. https://doi.org/10.1371/journal.pone.0141821. Wu, Z.-Y., Milne, R.I., Liu, J., et al., 2022. Phylogenomics and evolutionary history of Oreocnide (Urticaceae) shed light on recent geological and climatic events in SE Asia. Mol. Phylogenet. Evol. 175, 107555. https://doi.org/10.1016/j.ympev.2022.107555. Wu, Z.-Y., Monro, A.K., Milne, R.I., et al., 2013. Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Mol. Phylogenet. Evol. 69, 814-827. https://doi.org/10.1016/j.ympev.2013.06.022. Xiang, Q.-P., Wei, R., Shao, Y.-Z., et al., 2015. Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. Mol. Phylogenet. Evol. 82, 1-14. https://doi.org/10.1016/j.ympev.2014.10.008. Xu, Y.-L., Shen, H.-H., Du, X.-Y., et al., 2022. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae). Plant Diver. 44, 519-529. https://doi.org/10.1016/j.pld.2022.06.002. Yan, Y., da Fonseca, R. R., Rahbek, C., et al., 2024. A new nuclear phylogeny of the tea family (Theaceae) unravels rapid radiations in genus Camellia. Mol. Phylogenet. Evol., 196, 108089. https://doi.org/10.1016/j.ympev.2024.108089. Yang, J.-B., Tang, M., Li, H.-T., et al., 2013. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol. Biol. 13, 1-12. https://doi.org/10.1186/1471-2148-13-84. Yang, Y., Sun, P., Lv, L., et al., 2020. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215-222. https://doi.org/10.1038/s41477-020-0594-6. Yu, W.-B., Liu, M.-L., Wang, H., et al., 2015. Towards a comprehensive phylogeny of the large temperate genus Pedicularis (Orobanchaceae), with an emphasis on species from the Himalaya-Hengduan Mountains. BMC Plant Biol. 15, 1-14. https://doi.org/10.1186/s12870-015-0547-9. Yu, X.Q., Jiang, Y.Z., Folk, R.A., et al., 2022. Species discrimination in Schima (Theaceae): next-generation super-barcodes meet evolutionary complexity. Mol. Ecol. Resour. 22, 3161-3175. https://doi.org/10.1111/1755-0998.13683. Yu, Y., Blair, C., He, X., 2020. Rasp 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604-606. https://doi.org/10.1093/molbev/msz257. Zan, T., He, Y.-T., Zhang, M., et al., 2023. Phylogenomic analyses of Camellia support reticulate evolution among major clades. Mol. Phylogenet. Evol. 182, 107744. https://doi.org/10.1016/j.ympev.2023.107744. Zhang, C., Huang, C. H., Liu, M., et al., 2021. Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. J. Integr. Plant Biol. 63, 1273-1293. https://doi.org/10.1111/jipb.13078. Zhang, C., Rabiee, M., Sayyari, E., et al., 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19, 15-30. https://doi.org/10.1186/s12859-018-2129-y. Zhang, L., Huang, Y.W., Huang, J.L., et al., 2023. DNA barcoding of Cymbidium by genome skimming: Call for next-generation nuclear barcodes. Mol. Ecol. Resour. 23, 424-439. https://doi.org/10.1111/1755-0998.13719. Zhang, N., Erickson, D.L., Ramachandran, P., et al., 2017. An analysis of Echinacea chloroplast genomes: implications for future botanical identification. Sci. Rep. 7, 216. https://doi.org/10.1038/s41598-017-00321-6. Zheng, S., Poczai, P., Hyvonen, J., et al., 2020. Chloroplot: an online program for the versatile plotting of organelle genomes. Front. Genet. 11, 576124. https://doi.org/10.3389/fgene.2020.576124. Zhou, M.Y., Liu, J.X., Ma, P.F., et al., 2022. Plastid phylogenomics shed light on intergeneric relationships and spatiotemporal evolutionary history of Melocanninae (Poaceae: Bambusoideae). J. Systemat. Evol. 60, 640-652. https://doi.org/10.1111/jse.12843. Zhou, Q., Lin, C.-W., Ng, W.L., et al., 2019. Analyses of plastome sequences improve phylogenetic resolution and provide new insight into the evolutionary history of Asian Sonerileae/Dissochaeteae. Front. Plant Sci. 10, 485977. https://doi.org/10.3389/fpls.2019.01477. |
[1] | Kai-Yun Chen, Jin-Dan Wang, Rui-Qi Xiang, Xue-Dan Yang, Quan-Zheng Yun, Yuan Huang, Hang Sun, Jia-Hui Chen. Backbone phylogeny of Salix based on genome skimming data [J]. Plant Diversity, 2025, 47(02): 178-188. |
[2] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species [J]. Plant Diversity, 2025, 47(01): 53-67. |
[3] | Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu. A revised classification of Dryopteridaceae based on plastome phylogenomics and morphological evidence, with the description of a new genus, Pseudarachniodes [J]. Plant Diversity, 2025, 47(01): 34-52. |
[4] | Liansheng Xu, Zhuqiu Song, Tian Li, Zichao Jin, Buyun Zhang, Siyi Du, Shuyuan Liao, Xingjie Zhong, Yousheng Chen. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq) [J]. Plant Diversity, 2025, 47(01): 21-33. |
[5] | Yongli Wang, Yan-Da Li, Shuo Wang, Erik Tihelka, Michael S. Engel, Chenyang Cai. Modeling compositional heterogeneity resolves deep phylogeny of flowering plants [J]. Plant Diversity, 2025, 47(01): 13-20. |
[6] | Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae) [J]. Plant Diversity, 2024, 46(03): 344-352. |
[7] | Dilmurod Makhmudjanov, Sergei Volis, Ziyoviddin Yusupov, Inom Juramurodov, Komiljon Tojibaev, Tao Deng, Hang Sun. Central Asia revealed as a key area in evolution of Eremurus (Asphodelaceae) [J]. Plant Diversity, 2024, 46(03): 333-343. |
[8] | Peng-Cheng Fu, Qiao-Qiao Guo, Di Chang, Qing-Bo Gao, Shan-Shan Sun. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis [J]. Plant Diversity, 2024, 46(02): 194-205. |
[9] | Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia [J]. Plant Diversity, 2023, 45(02): 147-155. |
[10] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes [J]. Plant Diversity, 2023, 45(02): 125-132. |
[11] | Yan-Ling Xu, Hao-Hua Shen, Xin-Yu Du, Lu Lu. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae) [J]. Plant Diversity, 2022, 44(06): 519-529. |
[12] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species [J]. Plant Diversity, 2022, 44(05): 505-517. |
[13] | Juan Chen, Sijin Zeng, Linya Zeng, Khang Sinh Nguyen, Jiawei Yan, Hua Liu, Nianhe Xia. Parahellenia, a new genus segregated from Hellenia (Costaceae) based on phylogenetic and morphological evidence [J]. Plant Diversity, 2022, 44(04): 389-405. |
[14] | Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang. Recent advances on phylogenomics of gymnosperms and a new classification [J]. Plant Diversity, 2022, 44(04): 340-350. |
[15] | Mengqing Zhe, Le Zhang, Fang Liu, Yiwei Huang, Weishu Fan, Junbo Yang, Andan Zhu. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes [J]. Plant Diversity, 2022, 44(03): 316-321. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 3
|
|
|||||||||||||||||||||||||||||||||