Plant Diversity ›› 2024, Vol. 46 ›› Issue (04): 425-434.DOI: 10.1016/j.pld.2024.05.002
Yajun Wanga,b,c, Hanchen Wanga,b,c, Chao Yea,b,c, Zhiping Wanga,b,c, Chongbo Maa,b,c, Dongliang Lina,b,c, Xiaohua Jina,c
Received:
2023-10-10
Revised:
2024-05-10
Online:
2024-07-25
Published:
2024-07-29
Contact:
Xiaohua Jin,E-mail:xiaohuajin@ibcas.ac.cn
Supported by:
Yajun Wang, Hanchen Wang, Chao Ye, Zhiping Wang, Chongbo Ma, Dongliang Lin, Xiaohua Jin. Progress in systematics and biogeography of Orchidaceae[J]. Plant Diversity, 2024, 46(04): 425-434.
Add to citation manager EndNote|Ris|BibTeX
Ai, Y., Li, Z., Sun, W.H., et al., 2021. The Cymbidium genome reveals the evolution of unique morphological traits. Hortic. Res. 8, 255. https://doi.org/10.1038/s41438-021-00683-z. Andriananjamanantsoa, H.N., Engberg, S., Louis, E.E., Jr., et al., 2016. Diversification of Angraecum (Orchidaceae, Vandeae) in Madagascar: revised phylogeny reveals species accumulation through time rather than rapid radiation. PLoS One 11, e0163194. https://doi.org/10.1371/journal.pone.0163194. Azani, N., Babineau, M., Bailey, C.D., et al., 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44-77. https://doi.org/10.12705/661.3. Batista, J.A.N., Borges, K.S., de Faria, M.W.F., et al., 2013. Molecular phylogenetics of the species-rich genus Habenaria (Orchidaceae) in the New World based on nuclear and plastid DNA sequences. Mol. Phylogenet. Evol. 67, 95-109. https://doi.org/10.1016/j.ympev.2013.01.008. Bazinet, A.L., Mitter, K.T., Davis, D.R., et al., 2017. Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Syst. Entomol. 42, 305-316. https://doi.org/10.1111/syen.12217. Bell, D., Lin, Q., Gerelle, W.K., et al., 2020. Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. Am. J. Bot. 107, 91-115. https://doi.org/10.1002/ajb2.1397. Boachon, B., Buell, C.R., Crisovan, E., et al., 2018. Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol. Plant 11, 1084-1096. https://doi.org/10.1016/j.molp.2018.06.002. Bone, R.E., Smith, J.A.C., Arrigo, N., et al., 2015. A macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case study. New Phytol. 208, 469-481. https://doi.org/10.1111/nph.13572. Burns-Balogh, P., Funk, V., 1986. A phylogenetic analysis of the Orchidaceae. Smithsonian Contrib. Bot. 61, 1-79. https://doi.org/10.5479/si.0081024X.61. Cameron, K.M., 2005. Leave it to the leaves: a molecular phylogenetic study of Malaxideae (Epidendroideae, Orchidaceae). Am. J. Bot. 92, 1025-1032. https://doi.org/10.3732/ajb.92.6.1025. Cameron, K.M., Chase, M.W., Whitten, W.M., et al., 1999. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am. J. Bot. 86, 208-224. https://doi.org/10.2307/2656938. Cardelus, C.L., Mack, M.C., Woods, C., et al., 2009. The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica. Plant Soil. 318, 47-61. https://doi.org/10.1007/s11104-008-9816-9. Chao, Y.T., Chen, W.C., Chen, C.Y., et al., 2018. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol. J. 16, 2027-2041. https://doi.org/10.1111/pbi.12936. Chase, M.W., Cameron, K.M., Barrett, R., et al., 2003. DNA Data and Orchidaceae Systematics: a New Phylogenetic Classification. Natural History Publications. Chase, M.W., Cameron, K.M., Freudenstein, J.V., et al., 2015. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 177, 151-174. https://doi.org/10.1111/boj.12234. Chase, M.W., Christenhusz, M.J.M., Schuiteman, A., 2020a. Expansion of Calanthe to include the species of Cephalantheropsis, Gastrorchis and Phaius (Collabieae; Orchidaceae). Phytotaxa 472, 159-168. https://doi.org/10.11646/phytotaxa.472.2.6. Chase, M.W., Christenhusz, M.J.M., Schuiteman, A., 2020b. Proposal to conserve Calanthe, nom. Cons., against the additional names Phaius, Cyanorkis, and Gastorkis (Orchidaceae, Collabieae). Taxon 69, 1364-1365. https://doi.org/10.1002/tax.12396. Chase, M.W., Gravendeel, B., Sulistyo, B.P., et al., 2021. Expansion of the orchid genus Coelogyne (Arethuseae; Epidendroideae) to include Bracisepalum, Bulleyia, chelonistele, Dendrochilum, dickasonia, entomophobia, geesinkorchis, gynoglottis, ischnogyne, nabaluia, neogyna, otochilus, panisea and Pholidota. Phytotaxa 510, 94-134. https://doi.org/10.11646/phytotaxa.510.2.1. Chen, S.C., Liu Z.J., Zhu G.H., et al., 2009. Orchidaceae, In: Wu Z.Y., Raven P.H., Hong D.Y. (Eds.), Flora of China. Science Press, Beijing & Missouri Botanical Garden, pp. 167. Chen, S.P., Tian, H.Z., Guan, Q.X., et al., 2019. Molecular systematics of Goodyerinae (Cranichideae, Orchidoideae, Orchidaceae) based on multiple nuclear and plastid regions. Mol. Phylogenet. Evol. 139. https://doi.org/10.1016/j.ympev.2019.106542. Chen, H.Y., Zhang, Z.R., Yao, X., et al., 2024. Plastid phylogenomics provides new insights into the systematics, diversification, and biogeography of Cymbidium (Orchidaceae). Plant Divers. https://doi.org/10.1016/j.pld.2024.03.001. Cheon, S.M., Zhang, J.Z., Park, C.G., 2020. Is phylotranscriptomics as reliable as phylogenomics? Mol. Biol. Evol. 37, 3672-3683. https://doi.org/10.1093/molbev/msaa181. Conran, J.G., Bannister, J.M., Lee, D.E., 2009. Earliest orchid macrofossils: early miocene Dendrobium and Earina (Orchidaceae: Epidendroideae) from New Zealand. Am. J. Bot. 96, 466-474. https://doi.org/10.3732/ajb.0800269. De Lima, J.F., Franco Pinheiro Moreira, A.S., 2022. Structural plasticity in roots of the hemiepiphyte Vanilla phaeantha Rchb.f. (Orchidaceae): a relationship between environment and function. Sci. Nat. 109. https://doi.org/10.1007/s00114-022-01816-7. Deng, H., Zhang, G.Q., Lin, M., et al., 2015. Mining from transcriptomes: 315 single-copy orthologous genes concatenated for the phylogenetic analyses of Orchidaceae. Ecol. Evol. 5, 3800-3807. https://doi.org/10.1002/ece3.1642. Dong, S.-S., Zhou, X.-P., Peng, T., et al., 2023. Mitochondrial RNA editing sites affect the phylogenetic reconstruction of gymnosperms. Plant Divers. 45, 485-489. https://doi.org/10.1016/j.pld.2023.02.004. Dressler, R.L., 1981. The orchids: natural history and classification. Taxon https://doi.org/10.2307/1219717. Dressler, R.L., 1993. Phylogeny and Classification of the Orchid Family. Cambridge University Press, pp. 71-89. Dressler, R.L., Dodson, C., 1960. Classification and phylogeny of the Orchidaceae. Ann. Mo. Bot. Gard. 47, 25-68. Edera, A.A., Gandini, C.L., Sanchez-Puerta, M.V., 2018. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant Mol. Biol. 97, 215-231. https://doi.org/10.1007/s11103-018-0734-9. Fernandez, L.P., Byers, K., Cai, J., et al., 2019. A phylogenomic analysis of the floral transcriptomes of sexually deceptive and rewarding European orchids, Ophrys and Gymnadenia. Front. Plant Sci. 10, 01553. https://doi.org/10.3389/fpls.2019.01553. Freudenstein, J.V., Chase, M.W., 2015. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: progressive specialization and diversification. Ann. Bot. 115, 665-681. https://doi.org/10.1093/aob/mcu253. Gamisch, A., Comes, H.P., 2019. Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of Bulbophyllum (Orchidaceae). BMC Evol. Biol. 19, 93. https://doi.org/10.1186/s12862-019-1416-1. Gamisch, A., Fischer, G.A., Comes, H.P., 2015. Multiple independent origins of auto-pollination in tropical orchids (Bulbophyllum) in light of the hypothesis of selfing as an evolutionary dead end. BMC Evol. Biol. 15, 192. https://doi.org/10.1186/s12862-015-0471-5. Gamisch, A., Winter, K., Fischer, G.A., et al., 2021. Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae). New Phytol. 231, 1236-1248. https://doi.org/10.1111/nph.17437. Garay, L.A., 1972. On the origin of the Orchidaceae II. J. Arnold Arbor. 53, 202-215. GBIF.org, Citation Guidelines. 2024 (20 February). https://www.gbif.org/citation-guidelines. Geiger, D.L., 2023. Studies in oberonia 11: the genus Hippeophyllum reduced to oberonia, with ten new synonyms of Oberonia scortechinii (Orchidaceae: Malaxideae). Gard. Bull. Singapore 75, 129-148. . Givnish, T.J., Spalink, D., Ames, M., et al., 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. P. Roy. Soc. B-Biol. Sci. 282, 171-180. https://doi.org/10.1098/rspb.2015.1553. Givnish, T.J., Spalink, D., Ames, M., et al., 2016. Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J. Biogeogr. 43, 1905-1916. https://doi.org/10.1111/jbi.12854. Givnish, T.J., Zuluaga, A., Spalink, D., et al., 2018. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. Am. J. Bot. 105, 1888-1910. https://doi.org/10.1002/ajb2.1178. Goldman, D.H., Freudenstein, J.V., Kores, P.J., et al., 2001. Phylogenetics of Arethuseae (Orchidaceae) based on plastid matK and rbcL sequences. Syst. Bot. 26, 670-695. https://doi.org/10.1043/0363-6445-26.3.670. Gravendeel, B., Chase, M.W., De Vogel, E.F., et al., 2001. Molecular phylogeny of Coelogyne (Epidendroideae; Orchidaceae) based on plastid RFLPS, matK, and nuclear ribosomal its sequences: evidence for polyphyly. Am. J. Bot. 88, 1915-1927. https://doi.org/10.2307/3558367. Gravendeel, B., Smithson, A., Slik, F.J.W., et al., 2004. Epiphytism and pollinator specialization: drivers for orchid diversity? Pro. Roy. Soc. B-Biol. Sci. 359, 1523-1535. https://doi.org/10.1098/rstb.2004.1529. Guo, Y.Y., Luo, Y.B., Liu, Z.J., et al., 2012. Evolution and biogeography of the slipper orchids: eocene vicariance of the conduplicate genera in the Old and New World Tropics. PLoS One 7, e38788. https://doi.org/10.1371/journal.pone.0038788. Guo, J., Xu, W.B., Hu, Y., et al., 2020. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol. Plant 13, 1117-1133. https://doi.org/10.1016/j.molp.2020.05.011. Guo, C., Luo, Y., Gao, L.M., et al., 2023. Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65, 299-323. https://doi.org/10.1111/jipb.13415. Hendriks, K.P., Kiefer, C., Al-Shehbaz, I.A., et al., 2023. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr. Biol. 33, 4052-4068. https://doi.org/10.1016/j.cub.2023.08.026. Hermida-Carrera, C., Fares, M.A., Font-Carrascosa, M., et al., 2020. Exploring molecular evolution of rubisco in C3 and CAM Orchidaceae and bromeliaceae. BMC Evol. Biol. 20, 11. https://doi.org/10.1186/s12862-019-1551-8. Holtum, J.A.M., Winter, K., Weeks, M.A., et al., 2007. Crassulacean acid metabolism in the ZZ plant, Zamioculcas zamiifolia (Araceae). Am. J. Bot. 94, 1670-1676. https://doi.org/10.3732/ajb.94.10.1670. Hu, C., Tian, H.Z., Li, H.Q., et al., 2016. Phylogenetic analysis of a 'Jewel Orchid' genus Goodyera (Orchidaceae) based on DNAsequence data from nuclear and plastid regions. PLoS One 11, e0150366. https://doi.org/10.1371/journal.pone.0150366. Hu, A.Q., Gale, S.W., Liu, Z.J., et al., 2022. Diversification slowdown in the Cirrhopetalum Alliance (Bulbophyllum, Orchidaceae): insights from the evolutionary dynamics of crassulacean acid metabolism. Front. Plant Sci. 13, 794171. https://doi.org/10.3389/fpls.2022.794171. Huang, W.C., Liu, Z.J., Jiang, K., et al., 2022a. Phylogenetic analysis and character evolution of tribe Arethuseae (Orchidaceae) reveal a new genus Mengzia. Mol. Phylogenet. Evol. 167, 107362. https://doi.org/10.1016/j.ympev.2021.107362. Huang, W.C., Zhang, L., Columbus, J.T., et al., 2022b. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C-4 photosynthesis. Mol. Plant 15, 755-777. https://doi.org/10.1016/j.molp.2022.01.015. Igic, B., Busch, J.W., 2013. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 198, 386-397. https://doi.org/10.1111/nph.12182. Jersakova, J., Johnson, S.D., Kindlmann, P., 2006. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. 81, 219-235. https://doi.org/10.1017/S1464793105006986. Jiang, L., Lin, M.F., Wang, H., et al., 2022a. Haplotype-resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value. Plant J. 111, 1340-1353. https://doi.org/10.1111/tpj.15892. Jiang, Y., Hu, X.D., Yuan, Y., et al., 2022b. The Gastrodia menghaiensis (Orchidaceae) genome provides new insights of orchid mycorrhizal interactions. BMC Plant Biol. 22, 179. https://doi.org/10.1186/s12870-022-03573-1. Jin, W.T., Schuiteman, A., Chase, M.W., et al., 2017. Phylogenetics of subtribe Orchidinae s.l. (Orchidaceae; Orchidoideae) based on seven markers (plastid matK, psaB, rbcL, trnL-F, trnH-psbA, and nuclear nrITS, Xdh): implications for generic delimitation. BMC Plant Biol. 17, 222. https://doi.org/10.1186/s12870-017-1160-x. Jin, W.T., Gernandt, D.S., Wehenkel, C., et al., 2021. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc. Natl. Acad. Sci. U.S.A. 118, e2022302118. https://doi.org/10.1073/pnas.2022302118. Johnson, S.D., Edwards, T.J., 2000. The structure and function of orchid pollinaria. Plant Systemat. Evol. 222, 243-269. https://doi.org/10.1007/bf00984105. Johnson, M.G., Malley, C., Goffinet, B., et al., 2016. A phylotranscriptomic analysis of gene family expansion and evolution in the largest order of pleurocarpous mosses (Hypnales, Bryophyta). Mol. Phylogenet. Evol. 98, 29-40. https://doi.org/10.1016/j.ympev.2016.01.008. Judd, W.S., Stern, W.L., Cheadle, V.I., 1993. Phylogenetic position of apostasia and Neuwiedia (Orchidaceae). Bot. J. Linn. Soc. 113, 87-94. https://doi.org/10.1111/j.1095-8339.1993.tb00331.x. Kikuchi, I.A.B.S., Kessler, P.J.A., Schuiteman, A., et al., 2020. Molecular phylogenetic study of the tribe Tropidieae (Orchidaceae, Epidendroideae) with taxonomic and evolutionary implications. PhytoKeys 140, 11-22. https://doi.org/10.3897/phytokeys.140.46842. Kim, T.H., Kim, J.H., 2022. Molecular phylogeny and historical biogeography of Goodyera R. Br. (Orchidaceae): a case of the vicariance between East Asia and North America. Front. Plant Sci. 13, 850170. https://doi.org/10.3389/fpls.2022.850170. Kim, Y.K., Jo, S., Cheon, S.H., et al., 2020. Plastome evolution and phylogeny of subtribe Aeridinae (Vandeae, Orchidaceae). Mol. Phylogenet. Evol. 144, 106721. https://doi.org/10.1016/j.ympev.2019.106721. Kocyan, A., Qiu, Y.L., Endress, P.K., et al., 2004. A phylogenetic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F and matK sequences. Plant Systemat. Evol. 247, 203-213. https://doi.org/10.1007/s00606-004-0133-3. Kumar, S., Stecher, G., Suleski, M., et al., 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812-1819. https://doi.org/10.1093/molbev/msx116. Kumar, S., Suleski, M., Craig, J.M., et al., 2022. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174. https://doi.org/10.1093/molbev/msac174. Kurzweil, H., Weber, A., 1992. Floral morphology of southern african Orchideae. II. Habenariinae. Nord. J. Bot. 12, 39-61. https://doi.org/10.1111/j.1756-1051.1992.tb00200.x. Lai, Y.J., Han, Y., Schuiteman, A., et al., 2021. Diversification in Qinghai-Tibet Plateau: Orchidinae (Orchidaceae) clades exhibiting pre-adaptations play critical role. Mol. Phylogenet. Evol. 157, 107062. https://doi.org/10.1016/j.ympev.2020.107062. Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., et al., 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679. https://doi.org/10.1038/s41586-019-1693-2. Li, M.H., Zhang, G.Q., Lan, S.R., et al., 2016. A molecular phylogeny of Chinese orchids. J. Systemat. Evol. 54, 349-362. https://doi.org/10.1111/jse.12187. Li, H.T., Yi, T.S., Gao, L.M., et al., 2019a. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. https://doi.org/10.1038/s41477-019-0421-0. Li, Y.X., Li, Z.H., Schuiteman, A., et al., 2019b. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes. Mol. Phylogenet. Evol. 139, 106540. https://doi.org/10.1016/j.ympev.2019.106540. Li, L., Chung, S.W., Li, B., et al., 2020. New insight into the molecular phylogeny of the genus Liparis s.l. (Orchidaceae: Malaxideae) with a new generic segregate: Blepharoglossum. Plant Systemat. Evol. 306, 54. https://doi.org/10.1007/s00606-020-01679-3. Li, M.H., Liu, K.W., Li, Z., et al., 2022. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nat. Plants 8, 373. https://doi.org/10.1038/s41477-022-01127-9. Lin, C.S., Chen, J.J.W., Huang, Y.T., et al., 2015. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Sci. Rep. 5, 9040. https://doi.org/10.1038/srep09040. Liu, Y., Cox, C.J., Wang, W., et al., 2014. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst. Biol. 63, 862-878. https://doi.org/10.1093/sysbio/syu049. Liu, D.K., Tu, X.D., Zhao, Z., et al., 2020. Plastid phylogenomic data yield new and robust insights into the phylogeny of Cleisostoma-Gastrochilus clades (Orchidaceae, Aeridinae). Mol. Phylogenet. Evol. 145, 106729. https://doi.org/10.1016/j.ympev.2019.106729. Liu, H., Jacquemyn, H., Chen, W., et al., 2021. Niche evolution and historical biogeography of lady slipper orchids in North America and Eurasia. J. Biogeogr. 48, 2727-2741. https://doi.org/10.1111/jbi.14224. Liu, L.K., Du, J.X., Liu, Z.H., et al., 2023. Comparative and phylogenetic analyses of nine complete chloroplast genomes of Orchidaceae. Sci. Rep. 13, 21403. https://doi.org/10.1038/s41598-023-48043-2. Micheneau, C., Carlsward, B.S., Fay, M.F., et al., 2008. Phylogenetics and biogeography of mascarene angraecoid orchids (Vandeae, Orchidaceae). Mol. Phylogenet. Evol. 46, 908-922. https://doi.org/10.1016/j.ympev.2007.12.001. Morales, N.G., Toscano De Brito, A.L.V., Silverio Righetto Mauad, A.V., et al., 2021. Molecular phylogeny and biogeography of Pabstiella (Pleurothallidinae: Orchidaceae) highlight the importance of the Atlantic Rainforest for speciation in the genus. Bot. J. Linn. Soc. 195, 568-587. https://doi.org/10.1093/botlinnean/boaa092. Nakamura, A., Kitching, R.L., Cao, M., et al., 2017. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438-451. https://doi.org/10.1016/j.tree.2017.02.020. Nargar, K., Molina, S., Wagner, N., et al., 2018. Australasian orchid diversification in time and space: molecular phylogenetic insights from the beard orchids (Calochilus, Diurideae). Aust. Syst. Bot. 31, 389-408. https://doi.org/10.1071/sb18027. Newton, L.E., 1984. Tterminology of structures associated with pollinia of the Asclepiadaceae. Taxon 33, 619-621. https://doi.org/10.2307/1220779. Ng, Y.P., Schuiteman, A., Pedersen, H.A., et al., 2018. Phylogenetics and systematics of Eria and related genera (Orchidaceae: Podochileae). Bot. J. Linn. Soc. 186, 179-201. https://doi.org/10.1093/botlinnean/box088. Ngugi, G., Le Péchon, T., Martos, F., et al., 2020. Phylogenetic relationships amongst the African genera of subtribe Orchidinae s.l. (Orchidaceae; Orchideae): implications for subtribal and generic delimitations. Mol. Phylogenet. Evol. 153, 106946. https://doi.org/10.1016/j.ympev.2020.106946. Niu, Z.T., Zhu, S.Y., Pan, J.J., et al., 2017. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots. Sci. Rep. 7, 2073. https://doi.org/10.1038/s41598-017-02252-8. Perez-Escobar, O.A., Gottschling, M., Chomicki, G., et al., 2017. Andean mountain building did not preclude dispersal of lowland epiphytic orchids in the Neotropics. Sci. Rep. 7, 4919. https://doi.org/10.1038/s41598-017-04261-z. Perez-Escobar, O.A., Dodsworth, S., Bogarin, D., et al., 2021. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. Am. J. Bot. 108, 1166-1180. https://doi.org/10.1002/ajb2.1702. Perez-Escobar, O.A., Zizka, A., Bermudez, M.A., et al., 2022. The Andes through time: evolution and distribution of Andean floras. Trends Plant Sci. 27, 364-378. https://doi.org/10.1016/j.tplants.2021.09.010. Perez-Escobar, O.A., Bogarin, D., Przelomska, N.A., et al., 2024. The origin and speciation of Orchids. New Phytol. 242, 700-716. https://doi.org/10.1111/nph.19580. Petersen, G., Seberg, O., Davis, J.I., et al., 2006. Mitochondrial data in monocot phylogenetics. Aliso. 22, 52-62. https://doi.org/10.5642/aliso.20062201.05. Pfitzer, E., 1887. Entwurf einer naturlichen Anordnung der Orchideen. Carl Winter's Universitatsbuchhandlung, Heidelburg. https://doi.org/10.5962/bhl.title.166408. Pierce, S., Winter, K., Griffiths, H., 2002. The role of CAM in high rainfall cloud forests: an in situ comparison of photosynthetic pathways in Bromeliaceae. Plant Cell Environ. 25, 1181-1189. https://doi.org/10.1046/j.1365-3040.2002.00900.x. Poinar, G., Jr., Rasmussen, F.N., 2017. Orchids from the past, with a new species in Baltic amber. Bot. J. Linn. Soc. 183, 327-333. https://doi.org/10.1093/botlinnean/bow018. POWO, Plants of the World Online. 2024 (20 February) https://powo.science.kew.org/. Pridgeon, A.M., Cribb, P.J., Chase, M.W., et al., 2005. Genera Orchidacearum. Oxford University Press, New York. Qiu, Y.L., Li, L.B., Wang, B., et al., 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J. Systemat. Evol. 48, 391-425. https://doi.org/10.1111/j.1759-6831.2010.00097.x. Qu, X.J., Zhang, X.J., Cao, D.L., et al., 2022. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol. Phylogenet. Evol. 174, 107544. https://doi.org/10.1016/j.ympev.2022.107544. Ramirez, S.R., Gravendeel, B., Singer, R.B., et al., 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042-1045. https://doi.org/10.1038/nature06039. Ran, J.H., Shen, T.T., Wang, M.M., et al., 2018. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. P. Roy. Soc. B-Biol. Sci. 285, 1012. https://doi.org/10.1098/rspb.2018.1012. Raskoti, B.B., 2017. A taxonomic revision of herminium L. (Orchidoideae, Orchidaceae). PhytoKeys 79, 1-74. 10.3897/phytokeys.79.11215. Raskoti, B.B., Jin, W.T., Xiang, X.G., et al., 2016. A phylogenetic analysis of molecular and morphological characters of Herminium (Orchidaceae, Orchideae): evolutionary relationships, taxonomy, and patterns of character evolution. Cladistics 32, 198-210. https://doi.org/10.1111/cla.12125. Richardson, A.O., Rice, D.W., Young, G.J., et al., 2013. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biol. 11, 29. https://doi.org/10.1186/1741-7007-11-29. Ricogray, V., Thien, L.B., 1989. Effect of different ant species on reproductive fitness of schomburgkia-tibicinis (Orchidaceae). Oecologia. 81, 487-489. https://doi.org/10.1007/bf00378956. Roalson, E.H., Jimenez-Mejias, P., Hipp, A.L., et al., 2021. A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles. J. Systemat. Evol. 59, 726-762. https://doi.org/10.1111/jse.12722. Rudbeck, A.V., Sun, M., Tietje, M., et al., 2022. The Darwinian shortfall in plants: phylogenetic knowledge is driven by range size. Ecography 8, e06142. https://doi.org/10.1111/ecog.06142. Schlecter, R., 1926. Das system der Orchidaceen. Notizbl. Bot. Gart. U. Mus. BerlinDahlem. 9, 563-591. Serna-Sanchez, M.A., Perez-Escobar, O.A., Bogarin, D., et al., 2021. Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution. Sci. Rep. 11, 6858. https://doi.org/10.1038/s41598-021-83664-5. Shi, T., Huneau, C., Zhang, Y., et al., 2022. The slow-evolving Acorus tatarinowii genome sheds light on ancestral monocot evolution. Nat. Plants 8, 764. https://doi.org/10.1038/s41477-022-01187-x. Silvera, K., Neubig, K.M., Whitten, W.M., et al., 2010. Evolution along the crassulacean acid metabolism continuum. Funct. Plant Biol. 37, 995-1010. https://doi.org/10.1071/fp10084. Singer, R.B., Buzatto, C.R., Sanguinetti, A., et al., 2018. Found again: the extremely rare Codonorchis canisioi (Orchidaceae: Codonorchideae) reappears after being missing for 78 years. Plant Systemat. Evol. 304, 1157-1163. https://doi.org/10.1007/s00606-018-1538-8. Smidt, E.C., Toscano De Brito, A.L.V., Martins, A.C., et al., 2018. Phylogenetics, biogeography and character evolution in the Ornithocephalus clade (Orchidaceae, Oncidiinae). Bot. J. Linn. Soc. 188, 339-354. https://doi.org/10.1093/botlinnean/boy067. Smidt, E.C., Salazar, G.A., Silverio Righetto Mauad, A.V., et al., 2021. An Indomalesian origin in the Miocene for the diphyletic New World jewel orchids (Goodyerinae, Orchidoideae): molecular dating and biogeographic analyses document non-monophyly of the Neotropical genera. Bot. J. Linn. Soc. 197, 322-349. https://doi.org/10.1093/botlinnean/boab028. Soreng, R.J., Peterson, P.M., Romaschenko, K., et al., 2017. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J. Systemat. Evol. 55, 259-290. https://doi.org/10.1111/jse.12262. Soreng, R.J., Peterson, P.M., Zuloaga, F.O., et al., 2022. A worldwide phylogenetic classification of the Poaceae (Gramineae) III: an update. J. Systemat. Evol. 60, 476-521. https://doi.org/10.1111/jse.12847. Sosa, V., 2008. A molecular and morphological phylogenetic study of subtribe Bletiinae (Epidendreae, Orchidaceae). Cladistics 24, 103-104. https://doi.org/10.1600/036364407780360175. Spicer, M.E., Woods, C.L., 2022. A case for studying biotic interactions in epiphyte ecology and evolution. Perspect. Plant Ecol. Evol. Systemat. 54, 125658. https://doi.org/10.1016/j.ppees.2021.125658. Stull, G.W., Soltis, P.S., Soltis, D.E., et al., 2020. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. Am. J. Bot. 107, 790-805. https://doi.org/10.1002/ajb2.1468. Sun, Y., Chen, G.Z., Huang, J., et al., 2021. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids. Ornam. Plant Res. 1, 1-13. https://doi.org/10.48130/OPR-2021-0010. Szlachetko, D.L., Gorniak, M., Kowalkowska, A.K., et al., 2021. The natural history of the genus Cypripedium (Orchidaceae). Plant Biosyst. 155, 772-796. https://doi.org/10.1080/11263504.2020.1785963. Thompson, J.B., Davis, K.E., Dodd, H.O., et al., 2023. Speciation across the Earth driven by global cooling in terrestrial orchids. Proc. Natl. Acad. Sci. U.S.A. 120, e2102408120. https://doi.org/10.1073/pnas.2102408120. Tsai, C.C., Liao, P.C., Ko, Y.Z., et al., 2020. Phylogeny and historical biogeography of Paphiopedilum Pfitzer (Orchidaceae) based on nuclear and plastid DNA. Front. Plant Sci. 11, 00126. https://doi.org/10.3389/fpls.2020.00126. Tu, X.D., Liu, D.K., Xu, S.W., et al., 2021. Plastid phylogenomics improves resolution of phylogenetic relationship in the Cheirostylis and Goodyera clades of Goodyerinae (Orchidoideae, Orchidaceae). Mol. Phylogenet. Evol. 164, 107269. https://doi.org/10.1016/j.ympev.2021.107269. Unruh, S.A., McKain, M.R., Lee, Y.I., et al., 2018. Phylotranscriptomic analysis and genome evolution of the Cypripedioideae (Orchidaceae). Am. J. Bot. 105, 631-640. https://doi.org/10.1002/ajb2.1047. Van de Peer, Y., Mizrachi, E., Marchal, K., 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411-424. https://doi.org/10.1038/nrg.2017.26. van den Berg, C., Higgins, W.E., Dressler, R.L., et al., 2000. A phylogenetic analysis of Laeliinae (Orchidaceae) based on sequence data from internal transcribed spacers (ITS) of nuclear ribosomal DNA. Lindleyana 15, 96-114. https://api.semanticscholar.org/CorpusID:55324941. Vance, E.D., Nadkarni, N.M., 1990. Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol. Biochem. 22, 677-684. https://doi.org/10.1016/0038-0717(90)90015-r. Vermeulen, P., 1966. The system of the Orchidales. Acta Bot. Neerl. 15. https://doi.org/10.1111/J.1438-8677.1966.TB00228.X. Vitt, P., Taylor, A., Rakosy, D., et al., 2023. Global conservation prioritization for the Orchidaceae. Sci. Rep. 13, 6718. https://doi.org/10.1038/s41598-023-30177-y. Wicke, S., Mueller, K.F., DePamphilis, C.W., et al., 2016. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc. Natl. Acad. Sci. U.S.A. 113, 9045-9050. https://doi.org/10.1073/pnas.1607576113. Wickett, N.J., Mirarab, S., Nam, N., et al., 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111, E4859-E4868. https://doi.org/10.1073/pnas.1323926111. Winter, K., Virgo, A., Garcia, M., et al., 2021. Constitutive and facultative crassulacean acid metabolism (CAM) in Cuban oregano, Coleus amboinicus (Lamiaceae). Funct. Plant Biol. 48, 647-654. https://doi.org/10.1071/fp20127. Wong, D.C.J., Peakall, R., 2022. Orchid phylotranscriptomics: the prospects of repurposing multi-tissue transcriptomes for phylogenetic analysis and beyond. Front. Plant Sci. 13, 910362. https://doi.org/10.3389/fpls.2022.910362. Wu, S.S., Jiang, M.T., Miao, J.l., et al., 2023. Origin and diversification of a Himalayan orchid genus Pleione. Mol. Phylogenet. Evol. 184, 107797. https://doi.org/10.1016/j.ympev.2023.107797. Xia, X.M., Yang, M.Q., Li, C.L., et al., 2022. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol. Biol. Evol. 39, msab314. https://doi.org/10.1093/molbev/msab314. Xiang, X.G., Li, D.Z., Jin, W.T., et al., 2012. Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: evidence from molecular and morphological characters. Taxon 61, 45-54. https://doi.org/10.1002/tax.611003. Xiang, X.G., Mi, X.C., Zhou, H.L., et al., 2016. Biogeographical diversification of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broad-leaved forests. J. Biogeogr. 43, 1310-1323. https://doi.org/10.1111/jbi.12726. Xu, Y.X., Lei, Y.T., Su, Z.X., et al., 2021. A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. Plant J. 108, 1609-1623. https://doi.org/10.1111/tpj.15528. Xue, Q.Q., Yang, J.P., Yu, W.H., et al., 2023. The climate changes promoted the chloroplast genomic evolution of Dendrobium orchids among multiple photosynthetic pathways. BMC Plant Biol. 23, 189. https://doi.org/10.1186/s12870-023-04186-y. Yuan, Y., Jin, X.H., Liu, J., et al., 2018. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 9, 1615. https://doi.org/10.1038/s41467-018-03423-5. Zhang, Y.B., Du, H.H., Jin, X.H., et al., 2015. Species diversity and geographic distribution of wild Orchidaceae in China. Chin. Sci. Bull. 60, 179-188. Zhang, G.Q., Liu, K.W., Li, Z., et al., 2017. The Apostasia genome and the evolution of orchids. Nature 549, 379. https://doi.org/10.1038/nature23897. Zhang, C.F., Huang, C.H., Liu, M., et al., 2021a. Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. J. Integr. Plant Biol. 63, 1273-1293. https://doi.org/10.1111/jipb.13078. Zhang, W.X., Zhang, G.Q., Zeng, P., et al., 2021b. Genome sequence of Apostasia ramifera provides insights into the adaptive evolution in orchids. BMC Genom. 22, 536. https://doi.org/10.1186/s12864-021-07852-3. Zhang, Y.X., Zhang, G.Q., Zhang, D.Y., et al., 2021c. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Hortic. Res. 8, 183. https://doi.org/10.1038/s41438-021-00621-z. Zhang, D.Y., Zhao, X.W., Li, Y.Y., et al., 2022a. Advances and prospects of orchid research and industrialization. Hortic. Res. 28, 9. https://doi.org/10.1093/hr/uhac220. Zhang, M.Z., Liu, N., Da Silva, J.T.A., et al., 2022b. Physiological and transcriptomic analysis uncovers salinity stress mechanisms in a facultative crassulacean acid metabolism plant Dendrobium officinale. Front. Plant Sci. 13, 1028245. https://doi.org/10.3389/fpls.2022.1028245. Zhang, G.J., Hu, Y., Huang, M.Z., et al., 2023. Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. J. Integr. Plant Biol. 65, 1204-1225. https://doi.org/10.1111/jipb.13462. Zhang, J.Y., Cheng, Y.H., Liao, M., et al., 2024. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data. Plant Divers. https://doi.org/10.1016/j.pld.2023.08.001. Zhao, J.H., Zhou, P., Li, X.Q., et al., 2020. Temporal and spatial pattern of Holcoglossum Schltr. (Orchidaceae), an east Asian endemic genus, based on nuclear and chloroplast genes. Front. Ecol. Evol. 8, 00245. https://doi.org/10.3389/fevo.2020.00245. Zhou, P., Li, J.H., Liu, Y.Z., et al., 2023. Species richness disparity in tropical terrestrial herbaceous floras: evolutionary insight from Collabieae (Orchidaceae). Mol. Phylogenet. Evol. 186, 107860. https://doi.org/10.1016/j.ympev.2023.107860. Zhu, A.D., Guo, W.H., Jain, K., et al., 2014. Unprecedented heterogeneity in the synonymous substitution rate within a plant genome. Mol. Biol. Evol. 31, 1228-1236. https://doi.org/10.1093/molbev/msu079. Zizka, A., 2019. Big data suggest migration and bioregion connectivity as crucial for the evolution of Neotropical biodiversity. Front. Biogeogr. 11. https://doi.org/10.21425/F5FBG40617. Zou, L.H., Wan, X., Deng, H., et al., 2018. RNA-seq transcriptomic profiling of crassulacean acid metabolism pathway in Dendrobium catenatum. Sci. Data 5, 180252. https://doi.org/10.1038/sdata.2018.252. |
[1] | Yanjun Du, Rongchen Zhang, Xinran Tang, Xinyang Wang, Lingfeng Mao, Guoke Chen, Jiangshan Lai, Keping Ma. The mid-domain effect in flowering phenology [J]. Plant Diversity, 2024, 46(04): 502-509. |
[2] | Hui Feng, Achyut Kumar Banerjee, Wuxia Guo, Yang Yuan, Fuyuan Duan, Wei Lun Ng, Xuming Zhao, Yuting Liu, Chunmei Li, Ying Liu, Linfeng Li, Yelin Huang. Origin and evolution of a new tetraploid mangrove species in an intertidal zone [J]. Plant Diversity, 2024, 46(04): 476-490. |
[3] | Yue Zhao, Ya-Ping Chen, Bryan T. Drew, Fei Zhao, Maryam Almasi, Orzimat T. Turginov, Jin-Fei Xiao, Abdul G. Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang. Molecular phylogeny and taxonomy of Phlomoides (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data [J]. Plant Diversity, 2024, 46(04): 462-475. |
[4] | Jun-Yi Zhang, Yue-Hong Cheng, Min Liao, Yu Feng, Sen-Long Jin, Ting-Mei He, Hai He, Bo Xu. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data [J]. Plant Diversity, 2024, 46(04): 435-447. |
[5] | Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics [J]. Plant Diversity, 2024, 46(02): 219-228. |
[6] | Tao Yang, Jia-Hao Cai, Yan-Zhi Dai, Hong-Yu Chen, Lei Han, Li Zhang, Wei-Yu Liang, Xu-Jun Li, Wen-Jia Li, Jing-Yu Wu, San-Ping Xie, De-Fei Yan. Megafossils of Betulaceae from the Oligocene of Qaidam Basin and their paleoenvironmental and phytogeographic implications [J]. Plant Diversity, 2024, 46(01): 101-115. |
[7] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae) [J]. Plant Diversity, 2023, 45(05): 501-512. |
[8] | Sanchita Kumar, Taposhi Hazra, Robert A. Spicer, Manoshi Hazra, Teresa E. V. Spicer, Subir Bera, Mahasin Ali Khan. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains [J]. Plant Diversity, 2023, 45(01): 80-97. |
[9] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae) [J]. Plant Diversity, 2023, 45(01): 54-68. |
[10] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time [J]. Plant Diversity, 2023, 45(01): 27-35. |
[11] | Li-Guo Zhang, Xiao-Qian Li, Wei-Tao Jin, Yu-Juan Liu, Yao Zhao, Jun Rong, Xiao-Guo Xiang. Asymmetric migration dynamics of the tropical Asian and Australasian floras [J]. Plant Diversity, 2023, 45(01): 20-26. |
[12] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae) [J]. Plant Diversity, 2023, 45(01): 6-19. |
[13] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species [J]. Plant Diversity, 2022, 44(05): 505-517. |
[14] | Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang. Recent advances on phylogenomics of gymnosperms and a new classification [J]. Plant Diversity, 2022, 44(04): 340-350. |
[15] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data [J]. Plant Diversity, 2022, 44(03): 300-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||